Skip to main content
Log in

The influence of depth on object selection and manipulation in visual working memory within a 3D context

  • Brief Report
  • Published:
Psychonomic Bulletin & Review Aims and scope Submit manuscript

Abstract

Recent studies have examined whether the internal selection mechanism functions similarly for perception and visual working memory (VWM). However, the process of how we access and manipulate object representations distributed in a 3D space remains unclear. In this study, we utilized a memory search task to investigate the effect of depth on object selection and manipulation within VWM. The memory display consisted of colored items half positioned at the near depth plane and the other half at the far plane. During memory maintenance, the participants were instructed to search for a target representation and update its color. The results showed that under object-based attention (Experiments 1, 3, and 5), the update time was faster for targets at the near plane than for those at the far plane. This effect was absent in VWM when deploying spatial attention (Experiment 2) and in visual search regardless of the type of attention deployed (Experiment 4). The differential effects of depth on spatial and object-based attention in VWM suggest that spatial attention primarily relied on 2D location information irrespective of depth, whereas object-based attention seemed to prioritize memory representations at the front plane before shifting to the back. Our findings shed light on the interaction between depth perception and the selection mechanisms within VWM in a 3D context, emphasizing the importance of ordinal, rather than metric, spatial information in guiding object-based attention in VWM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahsan, T., Bolton, K., Wilcox, L. M., & Freud, E. (2021). Perceived depth modulates perceptual resolution. Psychonomic Bulletin & Review, 2. https://doi.org/10.3758/s13423-021-02006-8

  • Bamford, L. E., Klassen, N. R., & Karl, J. M. (2020). Faster recognition of graspable targets defined by orientation in a visual search task. Experimental Brain Research, 238(4), 905–916. https://doi.org/10.1007/s00221-020-05769-z

    Article  PubMed  Google Scholar 

  • Blini, E., Descope, C., Salemme, R., Kabil, A., Hadj-Bouziane, F., & Farnè, A. (2018). Mind the depth: Visual perception of shapes is better in peripersonal space. Psychological Science, 29(11), 1868–1877. https://doi.org/10.1177/0956797618795679

    Article  PubMed  Google Scholar 

  • Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436. https://doi.org/10.1163/156856897X00357

    Article  PubMed  Google Scholar 

  • Carrasco, M., & Chang, I. (1995). The interaction of objective and subjective organizations in a localization task. Perception and Psychophysics, 10, 113–129.

    Google Scholar 

  • Carrasco, M., Evert, D. L., Chang, I., & Katz, S. M. (1995). The eccentricity effect: Target eccentricity affects performance on conjunction searches. Perception & Psychophysics, 57, 1241–1261.

    Article  Google Scholar 

  • Chen, H., & Wyble, B. (2015). The location but not the attributes of visual cues are automatically encoded into working memory. Vision Research, 107, 76–85.

    Article  PubMed  Google Scholar 

  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–114.

    Article  PubMed  Google Scholar 

  • Cowan, N., & Morey, C. C. (2006). Visual working memory depends on attentional filtering. Trends in Cognitive Sciences, 10, 139–141.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chunharas, C., Rademaker, R. L., Sprague, T. C., & Brady, T. F. (2019) Separating memoranda in depth increases visual working memory performance. Journal of Vision, 19(1), 4, 1–16

  • Fang, W., Wang, K., Zhang, K., & Qian, J. (2023). Spatial attention based on 2D location and relative depth order modulates visual working memory in a 3D environment. British Journal of Psychology, 114, 112–131. https://doi.org/10.1111/bjop.12599

    Article  PubMed  Google Scholar 

  • Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.

    Article  PubMed  Google Scholar 

  • Foster, J. J., Bsales, E. M., Jaffe, R. J., & Awh, E. (2017). Alpha-band activity reveals spontaneous representations of spatial position in visual working memory. Current Biology, 27(20), 3216–3223, e3216.

  • Fougnie, D., & Marois, R. (2006). Distinct capacity limits for attention and working memory: Evidence from attentive tracking and visual working memory paradigms. Psychological Science, 17, 526–534.

    Article  PubMed  Google Scholar 

  • Kong, G., & Fougnie, D. (2019). Visual search within working memory. Journal of Experimental Psychology: General, 148(10), 1688–1700.

    Article  PubMed  Google Scholar 

  • Kong, G., & Fougnie, D. (2022). How selection in the mind is different from attention to the world. Journal of Experimental Psychology: General, 151(3), 542.

    Article  PubMed  Google Scholar 

  • Kovacs, O., & Harris, I. M. (2019). The role of location in visual feature binding. Attention, Perception, & Psychophysics, 81(5), 1551–1563. https://doi.org/10.3758/s13414-018-01638-8

    Article  Google Scholar 

  • Lamy, D., & Tsal, Y. (2001). On the status of location in visual attention. European Journal of Cognitive Psychology, 13(3), 305–342.

    Article  Google Scholar 

  • Li, Z., Tong, M., Chen, S., & Qian, J. (2021). Effect of attentional selection on working memory for depth in a retro-cueing paradigm. Memory & Cognition, 49, 747–757. https://doi.org/10.3758/s13421-020-01123-4

    Article  Google Scholar 

  • Liu, T., Stevens, S. T., & Carrasco, M. (2007). Comparing the time course and efficacy of spatial and feature-based attention. Vision Research, 47(1), 108–113. https://doi.org/10.1016/j.visres.2006.09.017

    Article  PubMed  Google Scholar 

  • Lin, Y., Kong, G., & Fougnie, D. (2021). Object-based selection in visual working memory. Psychonomic Bulletin & Review, 28, 1961–1971. https://doi.org/10.3758/s13423-021-01971-4

    Article  Google Scholar 

  • Makin, T. R., Holmes, N. P., Brozzoli, C., Rossetti, Y., & Farnè, A. (2009). Coding of visual space during motor preparation: Approaching objects rapidly modulate corticospinal excitability in hand-centered coordinates. Journal of Neuroscience, 29(38), 11841–11851. https://doi.org/10.1523/JNEUROSCI.2955-09.2009

    Article  PubMed  Google Scholar 

  • McMains, S. A., Fehd, H. M., Emmanouil, T. A., & Kastner, S. (2007). Mechanisms of feature-and space-based attention: response modulation and baseline increases. Journal of Neurophysiology, 98(4), 2110–2121.

    Article  PubMed  Google Scholar 

  • Nakayama, K., & Silverman, G. H. (1986). Serial and parallel processing of visual feature conjunctions. Nature, 320, 264–265.

    Article  PubMed  Google Scholar 

  • Norman, J. F., & Todd, J. T. (1998). Stereoscopic discrimination of interval and ordinal depth relations on smooth surfaces and in empty space. Perception, 27(3), 257–272.

    Article  PubMed  Google Scholar 

  • Panichello, M., & Buschman, T. (2021). Shared mechanisms underlie the control of working memory and attention. Nature, 592(7855), 601–605. https://doi.org/10.1038/s41586-021-03390-w

    Article  PubMed  PubMed Central  Google Scholar 

  • Previc, F. H., & Blume, J. L. (1993). Visual search asymmetries in three-dimensional space. Vision Research, 33(18), 2697–2704.

    Article  PubMed  Google Scholar 

  • Qian, J., Li, J., Wang, K., Liu, S., & Lei, Q. (2017). Evidence for the effect of depth on visual working memory. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-017-06719-6

    Article  Google Scholar 

  • Qian, J., Li, Z., Zhang, K., & Lei, Q. (2020). Relation matters: Relative depth order is stored in working memory for depth. Psychonomic Bulletin & Review, 27(2), 341–349.

    Article  Google Scholar 

  • Qian, J., & Zhang, K. (2019). Working memory for stereoscopic depth is limited and imprecise—Evidence from a change detection task. Psychonomic Bulletin & Review, 26, 1657–1665.

    Article  Google Scholar 

  • Qian, J., Zhang, K., Lei, Q., Han, Y., & Li, W. (2020). Task-dependent effects of voluntary space-based and involuntary feature-based attention on visual working memory. Psychological Research, 84, 1304–1319.

    Article  PubMed  Google Scholar 

  • Qian, J., Zhang, K., Wang, K., Li, J., & Lei, Q. (2018). Saturation and brightness modulate the effect of depth on visual working memory. Journal of Vision, 18(9), 16, 1–12.

  • Reeves, A., & Lei, Q. (2017). Short-term visual memory for location in depth: A U-shaped function of time. Attention, Perception, & Psychophysics, 79, 1917–1932.

    Article  Google Scholar 

  • Reis, G., Liu, Y., Havig, P., & Heft, E. (2011). The effects of target location and target distinction on visual search in a depth display. Journal of Intelligent Manufacturing, 22(1), 29–41.

    Article  Google Scholar 

  • Rensink, R. A. (2000). Visual search for change: A probe into the nature of attentional processing. Visual Cognition, 7, 345–376.

    Article  Google Scholar 

  • Schneegans, S., & Bays, P. M. (2017). Neural architecture for feature binding in visual working memory. The Journal of Neuroscience, 37(14), 3913–3925. https://doi.org/10.1523/JNEUROSCI.3493-16.2017

    Article  PubMed  PubMed Central  Google Scholar 

  • Sreenivasan, K. K., Gratton, C., Vytlacil, J., & D’Esposito, M. (2014). Evidence for working memory storage operations in perceptual cortex. Cognitive, Affective, & Behavioral Neuroscience, 14(1), 117–128. https://doi.org/10.3758/s13415-013-0246-7

    Article  Google Scholar 

  • Theeuwes, J. (1989). Effects of location and form cuing on the allocation of attention in the visual field. Acta Psychologica, 72(2), 177–192.

    Article  PubMed  Google Scholar 

  • Viswanathan, L., & Mingolla, E. (2002). Dynamics of attention in depth: Evidence from multi-element tracking. Perception, 31, 1415–1437.

    Article  PubMed  Google Scholar 

  • Wang, K., Jiang, Z., Huang, S., & Qian, J. (2021). Increasing perceptual separateness affects working memory for depth–re-allocation of attention from boundaries to the fixated center. Journal of Vision, 21(7), 8–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolfe, J. M. (2007). Guided search 4.0. current progress with a model of visual search. In W. D. Gray (Ed.), Integrated models of cognitive systems (pp. 99–119). Oxford University Press.

  • Wolfe, J. M., O’Neil, P., & Bennett, S. C. (1998). Why are there eccentricity effects in visual search? Visual and attentional hypotheses. Perception & Psychophysics, 60(1), 140–156.

    Article  Google Scholar 

  • Xu, Y., & Nakayama, K. (2007). Visual short-term memory benefit for objects on different 3-d surfaces. Journal of Experimental Psychology: General, 136(4), 653–662.

    Article  PubMed  Google Scholar 

  • Zhang, K., & Qian, J. (2022). The role of ensemble average differs in working memory for depth and planar information. Journal of Vision, 22(6):4, 1–16, https://doi.org/10.1167/jov.22.6.4

  • Zhang, K., & Qian, J. (2023). Top-down modulation on depth processing: Visual searches for metric and ordinal depth information show a pattern of dissociation. Psychonomic Bulletin & Review, 30, 1380–1387.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (32271100), and Basic and Applied Basic Research Foundation of Guangdong Province (2021A1515010840) The authors have no competing financial interests that might be perceived to influence the results and/or discussion reported in this paper.

Open practices statement

Data from the experiments and program codes are available online (https://osf.io/z7b6j/). None of the experiments was preregistered.

Funding

Basic and Applied Basic Research Foundation of Guangdong Province,2021A1515010840,National Natural Science Foundation of China,32271100

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiehui Qian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, J., Fu, B., Gao, Z. et al. The influence of depth on object selection and manipulation in visual working memory within a 3D context. Psychon Bull Rev (2024). https://doi.org/10.3758/s13423-024-02492-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.3758/s13423-024-02492-6

Keywords

Navigation