Skip to main content
Log in

Spatial resolution in visual memory

  • Brief Report
  • Published:
Psychonomic Bulletin & Review Aims and scope Submit manuscript

Abstract

Representations in visual short-term memory are considered to contain relatively elaborated information on object structure. Conversely, representations in earlier stages of the visual hierarchy are thought to be dominated by a sensory-based, feed-forward buildup of information. In four experiments, we compared the spatial resolution of different object properties between two points in time along the processing hierarchy in visual short-term memory. Subjects were asked either to estimate the distance between objects or to estimate the size of one of the objects' features under two experimental conditions, of either a short or a long delay period between the presentation of the target stimulus and the probe. When different objects were referred to, similar spatial resolution was found for the two delay periods, suggesting that initial processing stages are sensitive to object-based properties. Conversely, superior resolution was found for the short, as compared with the long, delay when features were referred to. These findings suggest that initial representations in visual memory are hybrid in that they allow fine-grained resolution for object features alongside normal visual sensitivity to the segregation between objects. The findings are also discussed in reference to the distinction made in earlier studies between visual short-term memory and iconic memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Averbach, E., & Coriell, E. (1961). Short-term memory in vision. Bell System Technical Journal, 40, 309–328.

    Article  Google Scholar 

  • Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18, 622–628.

    Article  PubMed  Google Scholar 

  • Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Dale, A. M., ... Halgren, E. (2006). Top-down facilitation of visual recognition. Proceedings of the National Academy of Sciences of the United States of America, 103, 449–454.

    Article  PubMed Central  PubMed  Google Scholar 

  • Becker, W. M., Pashler, H., & Anstis, S. (2000). The role of iconic memory in change-detection tasks. Perception, 29, 273–286.

    PubMed  Google Scholar 

  • Ben-Shalom, A., & Ganel, T. (2012). Object representations in visual memory: Evidence from visual illusions. Journal of Vision, 12, 1–11.

    Article  Google Scholar 

  • Biederman, I. (1985). Human image understanding: Recent experiments and a theory. Computer Vision, Graphics, and Image Processing, 32, 29–73.

    Article  Google Scholar 

  • Block, N. (2007). Consciousness, accessibility, and the mesh between psychology and neuroscience. Behavioral and Brain Sciences, 30, 481–548.

    PubMed  Google Scholar 

  • Block, N. (2011). Perceptual consciousness overflows cognitive access. Trends in Cognitive Science, 15, 567–575.

    Article  Google Scholar 

  • Brady, T. F., Konkle, T., Alvarez, G. A., & Olivia, A. (2013). Real-world object are not represented as bound units: Independent forgetting of different object details from visual memory. Journal of Experimental Psychology: General, 142, 791–808.

    Article  Google Scholar 

  • Coltheart, M. (1980). Iconic memory and visible persistence. Perception & Psychophysics, 27, 183–228.

    Article  Google Scholar 

  • Dehaene, S., & Naccache, L. (2001). Toward a cognitive neuroscience of consciousness: Basic evidence and workspace framework. Cognition, 79, 1–37.

    Article  PubMed  Google Scholar 

  • Di Lollo, V., & Dixon, P. (1988). Two forms of persistence in visual information processing. Journal of Experimental Psychology: Human Perception and Performance, 14, 671–681.

    PubMed  Google Scholar 

  • Dixon, P., & Gordon, D. R. (1997). Attentional components of partial report. Journal of Experimental Psychology: Human Perception and Performance, 23, 1253–1271.

    Google Scholar 

  • Duncan, L. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology: General, 113, 501–517.

    Article  Google Scholar 

  • Efron, R. (1970). Effect of stimulus duration on perceptual onset and offset latencies. Perception & Psychophysics, 8, 231–234.

    Article  Google Scholar 

  • Fang, F., Boyaci, H., Kersten, D., & Murray, S. (2008). Attention-dependent representation of size illusion in human V1. Current Biology, 18, 1707–1712.

    Article  PubMed Central  PubMed  Google Scholar 

  • Felfoldy, G. L. (1974). Repetition effects in choice reaction time to multidimensional stimuli. Perception & Psychophysics, 15, 453–459.

    Article  Google Scholar 

  • Ganel, T., & Goodale, M. A. (2003). Visual control of action but not perception requires analytical processing of object shape. Nature, 426, 664–667.

    Article  PubMed  Google Scholar 

  • Gegenfurtner, R. K., & Sperling, G. (1993). Information transfer in iconic memory experiments. Journal of Experimental Psychology: Human Perception and Performance, 19, 845–866.

    PubMed  Google Scholar 

  • Goodale, M. A., Westwood, D. A., & Milner, A. D. (2004). Two distinct modes of control for object-directed action. Progress in Brain Research, 144, 131–144.

    Article  PubMed  Google Scholar 

  • Gregory, R. L. (2009). Seeing through illusions. Oxford: Oxford University Press.

    Google Scholar 

  • Haffenden, A. M., & Goodale, M. A. (1998). The effect of pictorial illusion on prehension and perception. Journal of Cognitive Neuroscience, 10, 122–136.

    Article  PubMed  Google Scholar 

  • Hämäläinen, M. S., Marinkovic, K., Schacter, D. L., Rosen, B. R., & Halgren, E. (2006). Top-down facilitation of visual recognition. Proceedings of the National Academy of Sciences of the United States of America, 103, 449–454.

    Article  PubMed Central  PubMed  Google Scholar 

  • Irwin, E. D., & Yeomans, M. J. (1986). Sensory registration and informational persistence. Journal of Experimental Psychology: Human Perception and Performance, 12, 343–360.

    PubMed  Google Scholar 

  • Lamme, V. (2004). Separate neural definitions of visual consciousness and visual attention: A case for phenomenal awareness. Neural Networks, 17, 861–872.

    Article  PubMed  Google Scholar 

  • Lamme, V. (2010). How neuroscience will change our view on consciousness. Cognitive Neuroscience, 1, 204–220.

    Article  PubMed  Google Scholar 

  • Landman, R., Spekreijse, H., & Lamme, V. A. F. (2003). Large capacity storage of integrated objects before change blindness. Vision Research, 43, 149–164.

    Article  PubMed  Google Scholar 

  • Landman, R., Spekreijse, H., & Lamme, V. A. F. (2004). The role of figure-ground segregation in change blindness. Psychonomic Bulletin and Review, 11, 254–261.

    Article  PubMed  Google Scholar 

  • Loftus, R. G., & Irwin, E. D. (1998). On the relations among different measures of visible and informational persistence. Cognitive Psychology, 35, 135–199.

    Article  PubMed  Google Scholar 

  • Logan, G. (1996). The CODE theory of visual attention: An integration of space-based and object-based attention. Psychological Review, 103, 603–649.

    Article  PubMed  Google Scholar 

  • Long, M. G. (1980). Iconic memory: A review and critique of the study of short-term visual storage. Psychological Bulletin, 88, 785–820.

    Article  PubMed  Google Scholar 

  • Maniatis, L. M. (2010). Alignment with the horizontal plane: Evidence for an orientation constraint in the perception of shape. Perception, 39, 1175–1184.

    Article  PubMed  Google Scholar 

  • Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. New York: W.H. Freeman & Co.

    Google Scholar 

  • Merikle, P. M. (1980). Selection from visual persistence by perceptual groups and category membership. Journal of Experimental Psychology: General, 109, 279–295.

    Article  Google Scholar 

  • Murray, S., Boyaci, H., & Kersten, D. (2006). The Representation of perceived angular size in human primary visual cortex. Nature Neuroscience, 9, 429–434.

    Article  PubMed  Google Scholar 

  • Palmer, S., & Rock, I. (1994). Rethinking perceptual organization: The role of uniform connectedness. Psychonomic Bulletin & Review, 1, 29–55.

    Article  Google Scholar 

  • Patterson, M., & Martin-Bly, B. (2007). Visual Working Memory for global, objects and part based information. Memory & Cognition, 35, 738–751.

    Article  Google Scholar 

  • Riesenhuber, M., & Poggio, T. (2000). Models of object recognition. Nature Neuroscience, 3, 1199–1204.

    Article  PubMed  Google Scholar 

  • Sligte, I., & Lamme, V. (2008). Are there multiple visual short-term memory stores? PLoS ONE, 3, e1699.

    Article  PubMed Central  PubMed  Google Scholar 

  • Smithson, H., & Mollon, J. (2009). Do masks terminate the icon? The Quarterly Journal of Experimental Psychology, 59, 150–160.

    Article  Google Scholar 

  • Sperling, G. (1960). The information available in brief visual presentations; psychological monograph. General and Applied, 74, 1–29.

    Google Scholar 

  • Todd, J., & Marois, R. (2004). Capacity limits of short term memory in human posterior parietal cortex. Nature, 428, 751–754.

    Article  PubMed  Google Scholar 

  • Vandenbroucke, A. R. E., Sligte, I. G., Fahrenfort, J. J., Ambroziak, K. B., & Lamme, V. (2012). Non-attended representations are perceptual rather than unconscious in nature. PLoS ONE, 7, e50042.

    Article  PubMed Central  PubMed  Google Scholar 

  • Vogel, K. E., Woodmen, F. G., & Luck, J. S. (2001). Storage of features, conjunctions & objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27, 92–114.

    PubMed  Google Scholar 

  • Wokke, M., Vandenbroucke, A., Scholte, M., & Lamme, V. (2013). Confuse your illusion feedback to early visual cortex contributes to perceptual completion. Psychological Science, 24, 63–71.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Gal Nir for her help in running the experiments and Hilla Jacobson-Horowitz for her help and comments throughout this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzvi Ganel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben-Shalom, A., Ganel, T. Spatial resolution in visual memory. Psychon Bull Rev 22, 500–508 (2015). https://doi.org/10.3758/s13423-014-0707-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13423-014-0707-1

Keywords

Navigation