Skip to main content
Log in

Real-Time Spline Adaptive Filter: Design and Efficiency Analysis

  • Analysis and Synthesis of Signals and Images
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The paper shows the possibility of representing a recurrent \(P\)-spline in the form of a spline adaptive filter (SAF) with an infinite impulse response and variable operating parameters. A spline adaptive filter consists of a linear dynamic part and a nonlinear static part. To configure the parameters, computational schemes have been created, and their choice determines the method of adapting the nodes and the formula for the spline coefficients. Elimination of optimization search procedures provides low computational costs of the suggested calculation scheme construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. A. H. Sayed, Adaptive Filters (Wiley-IEEE Press, 2011). https://doi.org/10.1002/9780470374122

    Book  Google Scholar 

  2. Adaptive Learning Methods for Nonlinear System Modeling, Ed. by D. Comminiello and J. C. Príncipe (Elsevier, Oxford, 2018). https://doi.org/10.1016/C2016-0-04159-1

    Book  Google Scholar 

  3. M. A. Shcherbakov and A. P. Panov, ‘‘Nonlinear filtering with adaptation to local properties of the image,’’ Komp’yuternaya Opt. 38, 818–824 (2014). https://doi.org/10.18287/0134-2452-2014-38-4-818-824

    Article  ADS  Google Scholar 

  4. Y. R. Wang and C. M. Cheng, ‘‘Volterra series identification and its applications in structural identification of nonlinear block-oriented systems,’’ Int. J. Syst. Sci. 51, 1959–1968 (2020). https://doi.org/10.1080/00207721.2020.1781289

    Article  ADS  MathSciNet  Google Scholar 

  5. E. B. Solovyeva, ‘‘Behavioural nonlinear system models specified by various types of neural networks,’’ J. Phys.: Conf. Ser. 1015, 032139 (2018). https://doi.org/10.1088/1742-6596/1015/3/032139

  6. K. Fallahi, R. Raoufi, and H. Khoshbin, ‘‘An application of Chen system for secure chaotic communication based on extended Kalman filter and multi-shift cipher algorithm,’’ Commun. Nonlinear Sci. Numer. Simul. 13, 763–781 (2008). https://doi.org/10.1016/j.cnsns.2006.07.006

    Article  ADS  MathSciNet  Google Scholar 

  7. W. Liu, J. C. Principe, and S. Haykin, Kernel Adaptive Filtering: A Comprehensive Introduction (Wiley, 2010). https://doi.org/10.1002/9780470608593

    Book  Google Scholar 

  8. D. Comminiello, M. Scarpiniti, L. A. Azpicueta-Ruiz, J. Arenas-Garcia, and A. Uncini, ‘‘Functional link adaptive filters for nonlinear acoustic echo cancellation,’’ IEEE Trans. Audio, Speech, Lang. Process. 21, 1502–1512 (2013). https://doi.org/10.1109/tasl.2013.2255276

    Article  Google Scholar 

  9. M. Scarpiniti, D. Comminiello, R. Parisi, and A. Uncini, ‘‘Nonlinear spline adaptive filtering,’’ Signal Process. 93, 772–783 (2013). https://doi.org/10.1016/j.sigpro.2012.09.021

    Article  Google Scholar 

  10. Block-Oriented Nonlinear System Identification, Ed. by F. Giri and E. W. Bai, Lecture Notes in Control and Information Sciences, Vol. 404 (Springer, Berlin, 2010). https://doi.org/10.1007/978-1-84996-513-2

  11. S. Cheng, Yi. Wei, D. Sheng, and Yo. Wang, ‘‘Identification for Hammerstein nonlinear systems based on universal spline fractional order LMS algorithm,’’ Commun. Nonlinear Sci. Numer. Simul. 79, 104901 (2019). https://doi.org/10.1016/j.cnsns.2019.104901

  12. M. Scarpiniti, D. Comminiello, R. Parisi, and A. Uncini, ‘‘Spline adaptive filters,’’ in Adaptive Learning Methods for Nonlinear System Modeling, Ed. by D. Comminiello and J. C. Príncipe (Butterworth-Heinemann, London, 2018), pp. 47–69. https://doi.org/10.1016/b978-0-12-812976-0.00004-x

    Book  Google Scholar 

  13. M. Scarpiniti, D. Comminiello, R. Parisi, and A. Uncini, ‘‘Nonlinear system identification using IIR spline adaptive filters,’’ Signal Process. 108, 30–35 (2015). https://doi.org/10.1016/j.sigpro.2014.08.045

    Article  Google Scholar 

  14. V. Patel and N. V. George, ‘‘Multi-channel spline adaptive filters for non-linear active noise control,’’ Appl. Acoust. 161, 107142 (2020). https://doi.org/10.1016/j.apacoust.2019.107142

  15. S. Peng, Z. Wu, X. Zhang, and B. Chen, ‘‘Nonlinear spline adaptive filtering under maximum correntropy criterion,’’ in TENCON 2015-2015 IEEE Region 10 Conf., Macao, China, 2016 (IEEE, 2016), pp. 1–5. https://doi.org/10.1109/TENCON.2015.7373051

  16. C. Liu, Z. Zhang, and X. Tang, ‘‘Sign-normalized IIR spline adaptive filtering algorithms for impulsive noise environments,’’ Circuits, Syst., Signal Process. 38, 891–903 (2019). https://doi.org/10.1007/s00034-018-0874-9

    Article  Google Scholar 

  17. T. Yu, W. Li, Yi. Yu, and R. C. de Lamare, ‘‘Robust spline adaptive filtering based on accelerated gradient learning: Design and performance analysis,’’ Signal Process. 183, 107965 (2021). https://doi.org/10.1016/j.sigpro.2021.107965

  18. L. Yang, J. Liu, Z. Zhao, R. Yan, and X. Chen, ‘‘Interval variable step-size spline adaptive filter for the identification of nonlinear block-oriented system,’’ Nonlinear Dyn. 98, 1629–1643 (2019). https://doi.org/10.1007/s11071-019-05243-8

    Article  Google Scholar 

  19. R. Sameni, ‘‘Online filtering using piecewise smoothness priors: Application to normal and abnormal electrocardiogram denoising,’’ Signal Process. 133, 52–63 (2017). https://doi.org/10.1016/j.sigpro.2016.10.019

    Article  Google Scholar 

  20. Yu. Wang, Smoothing Splines: Methods and Applications (Chapman and Hall/CRC, New York, 2011). https://doi.org/10.1201/b10954

    Book  Google Scholar 

  21. S. Sharif and S. Kamal, ‘‘Comparison of significant approaches of penalized spline regression (P-splines),’’ Pak. J. Stat. Operation Res. 14, 289–303 (2018). https://doi.org/10.18187/pjsor.v14i2.1948

    Article  MathSciNet  Google Scholar 

  22. G. Budakçı, Ç. Dişibüyük, R. Goldman, and H. Oruç, ‘‘Extending fundamental formulas from classical B-splines to quantum B-splines,’’ J. computational applied mathematics 282, 17–33 (2015).

    Article  MathSciNet  Google Scholar 

  23. H. Idais, M. Yasin, M. Pasadas, and P. González, ‘‘Optimal knots allocation in the cubic and bicubic spline interpolation problems,’’ Math. Comput. Simul. 164, 131–145 (2019). https://doi.org/10.1016/j.matcom.2018.11.002

    Article  MathSciNet  Google Scholar 

  24. L. Tan and J. Jiang, Digital Signal Processing: Fundamentals and Applications (Academic, 2019). https://doi.org/10.1016/C2017-0-02319-4

    Book  Google Scholar 

  25. E. A. Kochegurova and E. S. Gorokhova, ‘‘Current estimation of the derivative of a nonstationary process based on a recurrent smoothing spline,’’ Optoelectron., Instrum. Data Process. 52, 280–285 (2016). https://doi.org/10.3103/S8756699016030109

    Article  Google Scholar 

  26. E. A. Kochegurova, A. I. Kochegurov, and N. E. Rozhkova, ‘‘Frequency analysis of recurrence variational P-splines,’’ Optoelectron., Instrum. Data Process. 53, 591–598 (2017). https://doi.org/10.3103/S8756699017060085

    Article  ADS  Google Scholar 

  27. L. Yang, J. Liu, R. Sun, R. Yan, and X. Chen, ‘‘Spline adaptive filters based on real-time over-sampling strategy for nonlinear system identification,’’ Nonlinear Dyn. 103, 657–675 (2021). https://doi.org/10.1007/s11071-020-05899-7

    Article  Google Scholar 

  28. S. K. Saha, R. Kar, D. Mandal, and S. P. Ghoshal, ‘‘Optimal IIR filter design using gravitational search algorithm with wavelet mutation,’’ J. King Saud Univ. Comput. Inf. Sci. 27, 25–39 (2015). https://doi.org/10.1016/j.jksuci.2014.03.002

    Article  Google Scholar 

  29. S. S. Bhattacharjee, V. Patel, and N. V. George, ‘‘Nonlinear spline adaptive filters based on a low rank approximation,’’ Signal Process. 201, 108726 (2022). https://doi.org/10.1016/j.sigpro.2022.108726

  30. E. A. Kochegurova and D. Wu, ‘‘Realization of a recursive digital filter based on penalized splines,’’ Comput. Opt. 42, 1083–1092 (2018). https://doi.org/10.18287/2412-6179-2018-42-6-1083-1092

    Article  ADS  Google Scholar 

  31. M. Rathod, V. Patel, and N. V. George, ‘‘Generalized spline nonlinear adaptive filters,’’ Expert Syst. Appl. 83, 122–130 (2017). https://doi.org/10.1016/j.eswa.2017.04.043

    Article  Google Scholar 

  32. T. Krivobokova, C. M. Crainiceanu, and G. Kauermann, ‘‘Fast adaptive penalized splines,’’ J. Comput. Graphical Stat. 17, 1–20 (2008). https://doi.org/10.1198/106186008x287328

    Article  MathSciNet  Google Scholar 

  33. L. Yang and Yo. Hong, ‘‘Adaptive penalized splines for data smoothing,’’ Comput. Stat. Data Anal. 108, 70–83 (2017). https://doi.org/10.1016/j.csda.2016.10.022

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 23-21-00259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kochegurova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Translated by L. Trubitsyna

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochegurova, E.A., Martynova, Y.A. Real-Time Spline Adaptive Filter: Design and Efficiency Analysis. Optoelectron.Instrument.Proc. 59, 569–579 (2023). https://doi.org/10.3103/S875669902305014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S875669902305014X

Keywords:

Navigation