Skip to main content

Design of Recursive Digital Filters with Penalized Spline Method

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2018)

Abstract

The paper describes the derivation of a recursive P-spline difference equation. It further demonstrates how a transformed spline can be used as a digital filter with an infinite impulse response and variable parameters. Frequency responses of a real-time spline filter correspond to frequency responses of low-frequency digital filters. The paper further examines the influence of some P-spline parameters on the efficiency of interpretation of real-time input measurement information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kochegurova, E.A., Kochegurov, A.I., Rozhkova, N.E.: Frequency analysis of recurrent variational P-splines. Optoelectron. Instrum. Data Process. 53(6), 591–598 (2017)

    Article  Google Scholar 

  2. Oppenheim, A., Schafer, R.: Discrete-Time Signal Processing, 3rd edn. Prentice-Hall, Upper Saddle River (1989)

    MATH  Google Scholar 

  3. Ifeachor, E.C., Jervis, B.W.: Digital Signal Processing: A Practical Approach, 2nd edn. Prentice-Hall, Upper Saddle River (2002)

    Google Scholar 

  4. Rabiner, L.R., Gold, B.: Theory and Application of Digital Signal Processing. New Delhi, PHI, Learning, Verlag (2009)

    Google Scholar 

  5. Lyons, R.G.: Understanding Digital Signal Processing, 3rd edn. Prentice Hall, Upper Saddle River (2011)

    Google Scholar 

  6. Manolakis, D., Ingle, V.: Applied Digital Signal Processing: Theory and practice. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  7. Bugrov, V.N.: Synthesis of integral recursive filters with arbitrarily given selective requirements. J. Dig. Signal Process. 2, 35–43 (2016)

    Google Scholar 

  8. De Boor, C.A.: Practical Guide to Splines. Springer, New York (2001)

    MATH  Google Scholar 

  9. Shumilov, B.M.: Splitting algorithms for the wavelet transform of first-degree splines on nonuniform grids. J. Comput. Math. Math. Phys. 56(7), 1236–1247 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Jauch, J., Bleimund, F., Rhode, S., Gauterin, F.: Recursive B-spline approximation using the Kalman filter. Int. J. Eng. Sci. Technol. 20(1), 28–34 (2017)

    Article  Google Scholar 

  11. Chen, X.-D., Ma, W., Paul, J.-C.: Cubic B-spline curve approximation by curve unclamping. Comput. Aided Des. 42(6), 523–534 (2010)

    Article  Google Scholar 

  12. Aguilera, A.M., Aguilera-Morillo, M.C.: Penalized PCA approaches for B-spline expansions of smooth functional data. Appl. Math. Comput. 219(14), 7805–7819 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Eilers, P.H.C., Marx, B.D.: Splines, knots, and penalties. Comput. Stat. 2(6), 637–653 (2010)

    Article  Google Scholar 

  14. Iorio, C., Frasso, G., D’Ambrosio, A., Siciliano, R.: Parsimonious time series clustering using p-splines. Expert Syst. Appl. 52, 26–38 (2016)

    Article  Google Scholar 

  15. Yang, L., Hong, Y.: Adaptive penalized splines for data smoothing. Comput. Stat. Data Anal. 108, 70–83 (2017)

    Article  MathSciNet  Google Scholar 

  16. Kochegurova, E., Gorokhova, E.: Current derivative estimation of non-stationary processes based on metrical information. In: Núñez, M., Nguyen, N.T., Camacho, D., Trawiński, B. (eds.) ICCCI 2015. LNCS (LNAI), vol. 9330, pp. 512–519. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24306-1_50

    Chapter  Google Scholar 

  17. Simpkin, A., Newell, J.: An additive penalty P-Spline approach to derivative estimation. Comput. Stat. Data Anal. 68, 30–43 (2013)

    Article  MathSciNet  Google Scholar 

  18. Park, H.: Choosing nodes and knots in closed B-spline curve interpolation to point data. Comput. Aided Des. 33(13), 967–974 (2001)

    Article  Google Scholar 

  19. Ülker, E., Arslan, A.: Automatic knot adjustment using an artificial immune system for B-spline curve approximation. Inf. Sci. 179(10), 1483–1494 (2009)

    Article  Google Scholar 

  20. Park, H., Lee, J.H.: B-spline curve fitting based on adaptive curve refinement using dominant points. Comput. Aided Des. 39(6), 439–451 (2007)

    Article  Google Scholar 

  21. Valenzuela, O., Delgado-Marquez, B., Pasadas, M.: Evolutionary computation for optimal knots allocation in smoothing splines. Appl. Math. Model. 37(8), 5851–5863 (2013)

    Article  MathSciNet  Google Scholar 

  22. Denisov, V.I., Faddeenkov, A.V.: Spline regression with variable penalty coefficients. Optoelectron. Instrum. Process. 51(3), 213–219 (2015)

    Article  Google Scholar 

  23. Rozhenko, A.I.: A new method for finding the optimal smoothing parameter for the abstract smoothing spline. J. Approx. Theory 162(6), 1117–1127 (2010)

    Article  MathSciNet  Google Scholar 

  24. Aydin, D., Memmedli, M.: Optimum smoothing parameter selection for penalized least squares in form of linear mixed effect models. Optimization 61(4), 459–476 (2012)

    Article  MathSciNet  Google Scholar 

  25. Kochegurova, E.A., Gorokhova, E.S.: Current estimation of the derivative of a nonstationary process based on a recurrent smoothing spline. Optoelectron. Instrum. Data Process. 52(3), 280–285 (2016)

    Article  Google Scholar 

  26. Iorio, C., Frasso, G., D’Ambrosio, A., Siciliano, R.: A P-spline based clustering approach for portfolio selection. Expert Syst. Appl. 95(1), 88–103 (2018)

    Article  Google Scholar 

  27. Jhong, J.-H., Koo, J.-Y., Lee, S.-W.: Penalized B-spline estimator for regression functions using total variation penalty. J. Stat. Plan. Infer. 184, 77–93 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The reported study was funded by RFBR according to the research project â„– 18-07-01007

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Kochegurova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kochegurova, E., Khozhaev, I., Ezangina, T. (2018). Design of Recursive Digital Filters with Penalized Spline Method. In: Nguyen, N., Pimenidis, E., Khan, Z., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2018. Lecture Notes in Computer Science(), vol 11056. Springer, Cham. https://doi.org/10.1007/978-3-319-98446-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98446-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98445-2

  • Online ISBN: 978-3-319-98446-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics