Skip to main content
Log in

Gas-discharge He–Ne laser with a wavelength of 1.52 µm for telecommunications systems

  • Optical Information Technologies
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

Results of a detailed study of a gas-discharge He–Ne laser with a wavelength of 1.52 µm for telecommunications systems are reported. Some important parameters of the laser are measured, such as the laser beam divergence (M 2), the laser power as a function of temperature, laser power stability, noise characteristics of laser radiation, etc. A possibility of laser microminiaturization is mentioned, which is of interest for its application under conditions of intense electromagnetic interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large Second-Order Nonlinearity in Poled Fused Silica,” Opt. Lett. 16 (22), 1732–1734 (1991).

    Article  ADS  Google Scholar 

  2. O. Zvelto, Principles of Lasers (Lan’, St. Petersburg, 2008) [in Russian].

    Google Scholar 

  3. V. P. Duraev, G. B. Lutz, E. T. Nedelin, et al., “Discretely Tuned Single-Frequency Laser with Fiber Bragg Gratings,” Kvant. Elektron. 57 (12), 1143–1145 (2007).

    Article  ADS  Google Scholar 

  4. V. R. Bennett, “Optical Gas Quantum Generators,” Usp. Fiz. Nauk 81 (1), 119–184 (1981).

    Google Scholar 

  5. Ya. M. Bondarchuk, R. M. Voznyak, and V. E. Privalov, “Investigation of Energy Characteristics of a He–Ne Laser at 1.5231 µm,” Optika Spektroskopiya 70 (1), 244–245 (1991).

    Google Scholar 

  6. Ya. M. Bondarchuk, “Development and Testing of a Laser for Telecommunications Systems,” Tekhnol. Konstr. Elektron. Apparat., No. 3, 12–13 (2006).

    Google Scholar 

  7. Reference Book on Lasers, Ed. by A. M. Prokhorov (Sov. Radio, Moscow, 1978) [in Russian].

  8. Yu. A. Anan’ev, Optical Cavities and Laser Beams (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  9. E. M. Voronkova, B. N. Grechushnikov, G. I. Distler, and I. P. Petrov, Optical Materials for Infrared Instruments (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  10. W. W. Rigrod, “Gain Saturation and Output Power of Optical Masers,” J. Appl. Phys. 34 (9), 2602–2609 (1963).

    Article  ADS  Google Scholar 

  11. S. A. Babin, T. Yu. Eremenko, A. E. Kuklin, and S. V. Khorev, “Waveguide Regime of Generation of a Wide-Aperture Ar+-Laser,” Kvant. Elektron. 21 (9), 817–821 (1994).

    Google Scholar 

  12. A. R. Striganov and N. S. Sventitskii, Tables of Spectral Lines of Neutral and Ionized Atoms (Atomizdat, Moscow, 1966) [in Russian].

    Google Scholar 

  13. Ch. E. Moore, Atomic Energy Levels. Circular of National Bureau of Standards 467 (U. S. Government Printing Office, Washington, 1949).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Sorokin.

Additional information

Original Russian Text © S.N. Atutov, V.A. Sorokin, 2015, published in Avtometriya, 2015, Vol. 51, No. 6, pp. 3–11.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atutov, S.N., Sorokin, V.A. Gas-discharge He–Ne laser with a wavelength of 1.52 µm for telecommunications systems. Optoelectron.Instrument.Proc. 51, 537–543 (2015). https://doi.org/10.3103/S8756699015060011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699015060011

Keywords

Navigation