Skip to main content

Radiation Power of He–Ne Laser with Different Geometry of the Tube Cross Section

  • Conference paper
  • First Online:
International Youth Conference on Electronics, Telecommunications and Information Technologies

Abstract

The method for estimating the power of a He–Ne laser with an arbitrary shape of a tube cross section is proposed. A new energy characteristic of the mode is introduced as an effective mode volume, taking into account the population inversion distribution of the active medium and the field distribution in the resonator. The population inversion distribution for the He–Ne laser satisfies the homogeneous Helmholtz equation, a method of approximated solution of which has been proposed previously. The method is used to estimate the power of lasers with rectangular and elliptical sections of the active element. The exact solution of the Helmholtz equation is used for both sections, respectively, in cylindrical and elliptical coordinates. The numerical calculations were made that examined the shape of the effective mode volume and calculated the radiation power for both cross sections. The calculation results for these cross sections give good agreement with previous laser gain calculations and experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. V.A. Kozhevnikov, V.E. Privalov, V.G. Shemanin: Effective mode volume evolution in the he-ne laser. in Proceedings of the 2019 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), Editor by E. Velichko (IEEE, Saint Petersburg, 2019), pp. 272–274

    Google Scholar 

  2. T. Tako, Self-absorption of spectral line. J. Phys. Soc. Jpn. 15(10), 2016–2032 (1961)

    Article  ADS  Google Scholar 

  3. W.R. Bennett Jr., Excitation and inversion mechanisms in gas lasers. Ann. N. Y. Acad. Sci. 122(2), 579–595 (1965)

    Article  ADS  Google Scholar 

  4. V.E. Privalov, S.A. Fridrihov, Dependence of the He-Ne laser radiation power on the geometry of the discharge gap cross section. Tech. Phys. 38(12), 2080–2084 (1968). (in Russian)

    Google Scholar 

  5. G. Herziger, W. Holzapfel, W. Seelig, Verstärkung einer He-Ne-Gasentladung für die Laserwellenlänge λ = 6328 AE. Zeitschrift für Physik 189, 385–400 (1966)

    Article  ADS  Google Scholar 

  6. D.C. Sinclair, Choice of mirror curvatures for gas laser cavities. Appl. Opt. 3(9), 1067–1072 (1964)

    Article  ADS  Google Scholar 

  7. V.A. Kozhevnikov, V.E. Privalov, The geometrical effect of an active element cross-section on the laser gain. St. Petersburg Polytech. State Univ. J. Phys. Math. 11(2), 77–87 (2018)

    Google Scholar 

  8. N.J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd edn. (Society for Industrial and Applied Mathematics, Philadelphia, 2002)

    Book  Google Scholar 

  9. Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. in 10th edn. Edited by M. Abramowitz, I.A. Stegun (National Bureau of Standards 1972)

    Google Scholar 

  10. N.W. McLachlan, Theory and Application of Mathieu Functions (Clarendon Press, Oxford, 1951)

    Google Scholar 

  11. D. Frenkel, R. Portugal, Algebraic methods to compute Mathieu functions. J. Phys. A: Math. Gen. 34, 3541–3551 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  12. M.M. Bibby, A.F. Peterson, Accurate Computation of Mathieu Functions. Synthesis Lectures on Computational Electromagnetics #32”. Morgan & Claypool Publishers (2014)

    Google Scholar 

  13. Tables relating to Mathieu functions. Characteristic values, coefficients, and joining factors. National Bureau of Standards (Columbia Univ. Pres., N.Y. 1951)

    Google Scholar 

  14. V.E. Privalov, V.A. Hodovoi, An experimental study of a He-Ne laser with a discharge gap of rectangular cross section. Opt. Spectrosc. 37, 797–799 (1974). (in Russian)

    Google Scholar 

  15. Z. Ren, H. Hu, B. Peng, Generation of Mathieu beams using the method of ‘combined axicon and amplitude modulation’. Opt. Commun. 426, 226–230 (2018)

    Article  ADS  Google Scholar 

  16. Z. Ren, J. He, Y. Shi, Generation of Mathieu beams using angular pupil modulation. Chin. Phys. B 27(12), 124201 (2018)

    Article  Google Scholar 

  17. I. Julián-Macías, C. Rickenstorff-Parrao, O.J. Cabrera-Rosas, E. Espíndola-Ramos, S.A. Juárez-Reyes, P. Ortega-Vidals, G. Silva-Ortigoza, C.T. Sosa-Sánchez, Wavefronts and caustics associated with Mathieu beams. J. Opt. Soc. Am. A 35(2), 267–274 (2018)

    Article  ADS  Google Scholar 

  18. J.C. Gutiérrez-Vega, M.D. Iturbe-Castillo, G.A. Ramírez, E. Tepichín, R.M. Rodrígues-Dagnino, S. Cháves-Cerda, G.H.C. New, Experimental demonstration of optical Mathieu beams. Opt. Commun. 195, 35–40 (2001)

    Article  ADS  Google Scholar 

  19. J.C. Gutiérrez-Vega, M.A. Bandres, Helmholtz-Gauss waves. J. Opt. Soc. Am. A 22(2), 289–298 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Orlov, V. Vosylius, P. Gotovski, A. Grabusovas, J. Baltrukonis, T. Gertus, Vector beams with parabolic and elliptic cross-sections for laser material processing applications. J. Laser Micro/Nanoeng. 13(3), 280–286 (2018)

    Google Scholar 

  21. Savchenko, E.A., Velichko, E.N., Aksenov E.T., Nepomnyashchaya, E.K.: Combined method for laser selection, positioning and analysis of micron and submicron cells and particles. in Proceedings - International Conference Laser Optics ICLO 2018, vol. 539 (2018)

    Google Scholar 

  22. V.A. Volkov, D.A. Gordeev, S.I. Ivanov, A.P. Lavrov, I.I. Saenko, Photonic beamformer model based on analog fiber-optic links’ components. J. Phys: Conf. Ser. 737(1), 012002 (2017)

    Google Scholar 

  23. E.K. Nepomnyashchaya, E.N. Velichko, I.V. Pleshakov, E.T. Aksenov, E.A. Savchenko, Investigation of ferrofluid nanostructure by laser light scattering: medical applications. J. Phys: Conf. Ser. 841, 012020 (2017)

    Google Scholar 

  24. S.I. Ivanov, A.P. Lavrov, S.A. Molodyakov, I.I. Saenko, Acousto-optical specrometers’ frequency performance stability. Proc. of SPIE 5381, 253–257 (2016)

    Google Scholar 

  25. M.V. Putintseva, E.T. Aksenov, C.C. Korikov, E.N. Velichko, Non-invasive research of biological objects by the method of laser polarimetry. J. Phys: Conf. Ser. 1124, 031021 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Kozhevnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kozhevnikov, V., Privalov, V., Shemanin, V. (2021). Radiation Power of He–Ne Laser with Different Geometry of the Tube Cross Section. In: Velichko, E., Vinnichenko, M., Kapralova, V., Koucheryavy, Y. (eds) International Youth Conference on Electronics, Telecommunications and Information Technologies. Springer Proceedings in Physics, vol 255. Springer, Cham. https://doi.org/10.1007/978-3-030-58868-7_39

Download citation

Publish with us

Policies and ethics