Skip to main content
Log in

Phase separation as a basis for the formation of light-emitting silicon nanoclusters in SiO x films irradiated with swift heavy ions

  • Multilayer Heterophase Electronic Materials
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

This paper presents a study of the effect of swift heavy Xe ions of energy 130–167 MeV at doses of 1012–1014 cm−2 and Bi ions of 700 MeV at doses of 3·1012–3·1013 cm−2 on films of stoichiometric thermal silicon dioxide, silicon dioxide films with ion-implanted excess silicon, and SiO x films with the stoichiometric parameter x varying from 0 to 2. According to electron microscopy and Raman spectroscopy data, irradiation with the swift heavy ions resulted in the formation of silicon nanoclusters. The luminescence spectra depended on the size, number, and structure of the Si nanoclusters formed. Their size can be controlled by varying both the effect parameters (primarily, the ion energy loss per unit length of the track) and the stoichiometric composition of the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Takagi, Y. Ogawa, Y. Yamazaki, et al., “Quantum Size Effects on Photoluminescence in Ultrafine Si Particles,” Appl. Phys. Lett. 56(24), 2379–2380 (1990).

    Article  ADS  Google Scholar 

  2. G. A. Kachurin, I. E. Tyschenko, K. S. Zhuravlev, et al., “Visible and Near-Infrared Luminescence from Silicon Nanostructures Formed by Ion Implantation and Pulse Annealing,” Nucl. Instrum. Meth. Phys. Res. B 122, 571–574 (1997).

    Article  ADS  Google Scholar 

  3. M. Toulemonde, Ch. Dufour, A. Meftah, and E. Paumier, “Transient Thermal Processes in Heavy Ion Irradiation of Crystalline Inorganic Insulators,” Nucl. Instrum. Meth. Phys. Res. B 166, 903–912 (2000).

    Article  ADS  Google Scholar 

  4. K. Awazu, S. Ishii, K. Shima, et al., “Structure of Latent Tracks Created by Swift Heavy-Ion Bombardment of Amorphous SiO2,” Phys. Rev. B 62(6), 3689–3698 (2000).

    Article  ADS  Google Scholar 

  5. D. K. Avasthi, Y. K. Mishra, F. Singh, and J. P. Stoquert, “Ion Tracks in Silica for Engineering the Embedded Nanoparticles,” Nucl. Instrum. Meth. Phys. Res. B 268, 3027–3032 (2010).

    Article  ADS  Google Scholar 

  6. S. M. M. Ramos, C. Clerc, B. Canut, et al., “Damage Kinetics in MeV Gold Ion-Irradiated Crystalline Quartz,” Nucl. Instrum. Meth. Phys. Res. B 166–167, 31–39 (2000).

    Article  Google Scholar 

  7. M. Toulemonde, S. M. M. Ramos, H. Bernas, et al., “MeV Gold Irradiation Induced Damage in α-Quartz: Competition between Nuclear and Electronic Stopping,” Nucl. Instrum. Meth. Phys. Res. B 178, 331–336 (2001).

    Article  ADS  Google Scholar 

  8. D. Rodichev, Ph. Lavallard, E. Dooryhee, et al., “Formation of Si Nanocrystals by Heavy Ion Irradiation of Amorphous SiO Films,” Nucl. Instrum. Meth. Phys. Res. B 107, 259–264 (1996).

    Article  ADS  Google Scholar 

  9. P. S. Chaudhari, T. M. Bhave, D. Kanjilal, and S. V. Bhoraskar, “Swift Heavy Ion Induced Growth of Nanocrystalline Silicon in Silicon Oxide,” J. Appl. Phys. 93(6), 3486–3489 (2003).

    Article  ADS  Google Scholar 

  10. P. S. Chaudhari, T. M. Bhave, R. Pasricha, et al., “Controlled Growth of Silicon Nanocrystallites in Silicon Oxide Matrix using 150 MeV Ag Ion Irradiation,” Nucl. Instrum. Meth. Phys. Res. B 239, 185–189 (2005).

    Article  ADS  Google Scholar 

  11. W. M. Arnoldbik, N. Tomozeiu, E. D. van Hattum, et al., “High-Energy Ion-Beam-Induced Phase Separation in SiOx Films,” Phys. Rev. B 71(7), 125329 (2005).

    Article  ADS  Google Scholar 

  12. I. V. Antonova, V. A. Skuratov, J. Jedrzejewski, and I. Balberg, “Ordered Arrays of Silicon Nanocrystals in SiO2: Structural, Optical, and Electronic Properties,” Fiz. Tekh. Poluprovodn. 44(4), 501–506 (2010).

    Google Scholar 

  13. A. N. Karpov, D. V. Marin, V. A. Volodin, et al., “Formation of SiOx Layers during Plasma Spraying of Si and SiO2 Targets,” Fiz. Tekh. Poluprovodn. 42(6), 747–752 (2008).

    Google Scholar 

  14. M. Dovrat, Y. Goshen, J. Jedrzejewski, et al., “Radiative Versus Nonradiative Decay Processes in Silicon Nanocrystals Probed by Time-Resolved Photoluminescence Spectroscopy,” Phys. Rev. B 69(8), 155311 (2004).

    Article  ADS  Google Scholar 

  15. R. Salh and H.-J. Fitting, “Mechanism of Radiation-Induced Defects in SiO2: The Role of Hydrogen,” Phys. Status Solidi C 4(3), 901–904 (2007).

    Article  ADS  Google Scholar 

  16. P. Mutti, G. Ghislotti, S. Bertoni, et al., “Room-Temperature Visible Luminescence from Silicon Nanocrystals in Silicon Implanted SiO2 Layers,” Appl. Phys. Lett. 66(7), 851–853 (1995).

    Article  ADS  Google Scholar 

  17. Y. Batra, T. Mohanty, and D. Kanjilal, “Formation of Controlled Semiconductor Nanostructures by Dense Electronic Excitation,” Nucl. Instrum. Meth. Phys. Res. B 266, 3107–3111 (2008).

    Article  ADS  Google Scholar 

  18. J. F. Gibbons, “Defects in Semiconductors,” Proc. IEEE 60(9), 1062–1073 (1972).

    Article  MathSciNet  Google Scholar 

  19. P. Kluth, C. S. Schnohr, O. H. Pakarinen, et al., “Fine Structure in Swift Heavy Ion Tracks in Amorphous SiO2,” Phys. Rev. Lett. 101(17), 175503 (2008).

    Article  ADS  Google Scholar 

  20. M. Lannoo, C. Delerue, and G. Allan, “Theory of Radiative and Nonradiative Transitions for Semiconductor Nanocrystals,” J. Luminescence 70, 170–179 (1996).

    Article  ADS  Google Scholar 

  21. B. Garrido Fernandez, M. Lopez, C. Garcia, et al., “Influence of Average Size and Interface Passivation on the Spectral Emission of Si Nanocrystals Embedded in SiO2,” J. Appl. Phys. 91(2), 798–807 (2002).

    Article  ADS  Google Scholar 

  22. S. Cheylan and R. G. Elliman, “Photoluminescence from Si Nanocrystals in Silica: The Effect of Hydrogen,” Nucl. Instrum. Meth. Phys. Res. B 175–177, 422–425 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Cherkova.

Additional information

Original Russian Text © S.G. Cherkova, G.A. Kachurin, V.A. Volodin, A.G. Cherkov, D.V. Marin, V.A. Skuratov, 2014, published in Avtometriya, 2014, Vol. 50, No. 3, pp. 93–100.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherkova, S.G., Kachurin, G.A., Volodin, V.A. et al. Phase separation as a basis for the formation of light-emitting silicon nanoclusters in SiO x films irradiated with swift heavy ions. Optoelectron.Instrument.Proc. 50, 292–297 (2014). https://doi.org/10.3103/S8756699014030133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699014030133

Keywords

Navigation