Skip to main content
Log in

Influence of Water Vapor on the Spatial Oscillations of the Average Electron Energy in Helium in a Constant Electric Field

  • WAVE STRUCTURES AND THEIR DIAGNOSTICS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The characteristics of spatial relaxation of the average electron energy in pure helium and in helium containing an admixture of water vapor in a constant electric field have been investigated by Monte Carlo simulation. The conditions under which the spatial relaxation in helium has a form of damped oscillations are considered. It is shown that even a small (0.1%) additive of water vapor leads to a significant decrease in the relaxation length, and the spatial oscillations almost disappear at 3% H2O. Calculations were also performed for a mixture He : (H2O : H2 : O2 : H), where the composition of atoms and molecules in the parentheses correspond to the composition formed from the initial water vapor in discharge plasma due to the dissociation of water molecules and subsequent plasma-chemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. Frank and G. Hertz, “Über Zusammenstösse zwischen Elektronen und den Molekülen des Quecksilberdampfes und die Ionisierungsspannung desselben,” Verh. Dtsch. Phys. Ges. 16, 457–467 (1914). https://doi.org/10.1002/phbl.19670230702

    Article  Google Scholar 

  2. G. Holst and E. Oosterhuis, “Over de electrische geleiding in gassen,” Physica 1 (1), 78–87 (1921).

    Google Scholar 

  3. M. J. Druyvesteyn, “Eine Methods zur Bestimmung der Beweglichkeit yon Edelgasionen mit Hilfe der negativen Schichten,” Z. Phys. 73 (1), 33–44 (1932). https://doi.org/10.1007/BF01337753

    Article  ADS  Google Scholar 

  4. L. D. Tsendin, “Electron distribution function of weakly ionized plasmas in nonuniform electric fields. II. Strong fields (energy balance determined by inelastic collisions),” Sov. J. Plasma Phys. 8 (2), 228–233 (1982).

    ADS  Google Scholar 

  5. V. I. Kolobov and V. A. Godyak, “Nonlocal electron kinetics in collisional gas discharge plasmas,” IEEE Trans. Plasma Sci. 23 (4), 503–531 (1995). https://doi.org/10.1109/27.467971

    Article  ADS  Google Scholar 

  6. Y. Sakai, H. Tagashira, and S. Sakamoto, “The variation of steady state electron mean energy between parallel plates in argon,” J. Phys. B: At. Mol. Phys. 5 (5), 1010–1016 (1972). https://doi.org/10.1088/0022-3700/5/5/023

    Article  ADS  Google Scholar 

  7. M. Hayashi, “Luminous layers in the prebreakdown region of low pressure noble gases,” J. Phys. D: Appl. Phys. 15 (8), 1411–1418 (1982). https://doi.org/10.1088/0022-3727/15/8/012

    Article  ADS  Google Scholar 

  8. S. Dujko, R. D. White, Z. M. Raspopović, and Z. Lj. Petrović, “Spatially resolved transport data for electrons in gases: Definition, interpretation and calculation,” Nucl. Instrum. Methods Phys. Res., Sect. B 279, 84–91 (2012). https://doi.org/10.1016/j.nimb.2011.10.067

    Article  Google Scholar 

  9. R. D. White, R. E. Robson, P. Nicoletopoulos, and S. Dujko, “Periodic structures in the Franck-Hertz experiment with neon: Boltzmann equation and Monte-Carlo analysis,” Eur. Phys. J. D 66, 117 (2012). https://doi.org/10.1140/epjd/e2012-20707-3

    Article  ADS  Google Scholar 

  10. F. Sigeneger, N. A. Dyatko, and R. Winkler, “Spatial electron relaxation: Comparison of Monte Carlo and Boltzmann equation results,” Plasma Chem. Plasma Process. 23 (1), 103–116 (2003). https://doi.org/10.1023/A:1022420920041

    Article  Google Scholar 

  11. S. Dujko, R. D. White, Z. Lj. Petrović, and R. E. Robson, “A multi-term solution of the nonconservative Boltzmann equation for the analysis of temporal and spatial non-local effects in charged-particle swarms in electric and magnetic fields,” Plasma Sources Sci. Technol. 20 (2), 024013 (2011). https://doi.org/10.1088/0963-0252/20/2/024013

    Article  ADS  Google Scholar 

  12. R. E. Robson, R. D. White, and M. Hildebrandt, “One hundred years of the Franck-Hertz experiment,” Eur. Phys. J. D 68, 188 (2014). https://doi.org/10.1140/epjd/e2014-50342-9

    Article  ADS  Google Scholar 

  13. P. Magyar, I. Korolov, and Z. Donko, “Photoelectric Franck-Hertz experiment and its kinetic analysis by Monte Carlo simulation,” Phys. Rev E 85 (5), 056409 (2012). https://doi.org/10.1103/PhysRevE.85.056409

    Article  ADS  Google Scholar 

  14. A. Albert, D. Bošnjaković, S. Dujko, and Z. Donkó, “Monte Carlo simulation of resonance effects of electron transport in a spatially modulated electric field in Ar, N2 and their mixtures,” J. Phys. D: Appl. Phys. 54 (13), 135202 (2021). https://doi.org/10.1088/1361-6463/abd505

    Article  ADS  Google Scholar 

  15. F. Sigeneger, Yu. D. Golubovskii, I. A. Porokhova, and R. Winkler, “On the nonlocal electron kinetics in s- and p-striations of DC glow discharge plasmas: I. Electron establishment in striation-like fields,” Plasma Chem. Plasma Process. 18 (2), 153–180 (1998). https://doi.org/10.1023/A:1021694231064

    Article  Google Scholar 

  16. R. E. Robson, B. Li, and R. D. White, “Spatially periodic structures in electron swarms and the Franck–Hertz experiment,” J. Phys. B: At. Mol. Opt. Phys. 33 (3), 507–520 (2000). https://doi.org/10.1088/0953-4075/33/3/318

    Article  ADS  Google Scholar 

  17. F. Sigeneger, R. Winkler, and R. E. Robson, “What really happens with the electron gas in the famous Franck-Hertz experiment?” Contrib. Plasma Phys. 43 (3–4), 178–197 (2003). https://doi.org/10.1002/ctpp.200310014

  18. F. Sigeneger and R. Winkler, “On the nonlocal electron kinetics in s and p striations of DC glow discharge plasmas: II. Electron properties in periodic states,” Plasma Chem. Plasma Process. 20 (4), 429–451 (2000). https://doi.org/10.1023/A:1007034004771

    Article  Google Scholar 

  19. Yu. B. Golubovskii, V. O. Nekuchaev, and A. Yu. Skoblo, “Advances in the study of striations in inert gases,” Tech. Phys. 59 (12), 1787–1800 (2014). https://doi.org/10.1134/S1063784214120093

    Article  Google Scholar 

  20. N. A. Dyatko, I. V. Kochetov, and V. N. Ochkin, “Influence of the ionization process on characteristics of spatial relaxation of the average electron energy in inert gases in a uniform electric field,” Phys. Rev. E 104 (6), 065204 (2021). https://doi.org/10.1103/PhysRevE.104.065204

    Article  ADS  Google Scholar 

  21. N. A. Dyatko, I. V. Kochetov, and V. N. Ochkin, “Peculiarities of spatial relaxation of the mean electron energy in inert gases and their mixtures in a uniform electric field,” Plasma Sources Sci. Technol. 29 (12), 125007 (2020). https://doi.org/10.1088/1361-6595/abc412

    Article  ADS  Google Scholar 

  22. ITER Final Design Report No. G 31 DDD 14 01.07.19 W 0.1, Sect. 3.1: Vacuum Pumping and Fuelling Systems (IAEA, Vienna, 2001).

  23. A. V. Bernatskiy, I. V. Kochetov, and V. N. Ochkin, “Determination of water leaks flows and their surface localization in plasma reactors by the ratio of the hydrogen isotopes line intensities,” Plasma Sources Sci. Technol. 28 (10), 105002 (2019). https://doi.org/10.1088/1361-6595/ab4301

    Article  ADS  Google Scholar 

  24. S. N. Andreev, A. V. Bernatskiy, and V. N. Ochkin, “The Langmuir probe measurements in a low-pressure discharge supported by hollow cathode using the combined periodic and noise sweep signals,” Vacuum 180, 109616 (2020). https://doi.org/10.1016/j.vacuum.2020.109616

    Article  ADS  Google Scholar 

  25. A. V. Bernatskiy, V. N. Ochkin, and I. V. Kochetov, “Multispectral actinometry of water and water-derivative molecules in moist, inert gas discharge plasmas,” J. Phys. D: Appl. Phys. 49 (39), 395204 (2016). https://doi.org/10.1088/0022-3727/49/39/395204

    Article  Google Scholar 

  26. HAYASHI database. www.lxcat.net. Accessed May 20, 2023.

  27. TRINITI database. www.lxcat.net. Accessed May 20, 2023.

  28. PHELPS database. www.lxcat.net. Accessed May 20, 2023.

  29. IST-LISBON database. www.lxcat.net. Accessed May 20, 2023.

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 19-12-00310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Dyatko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyatko, N.A., Kochetov, I.V. & Ochkin, V.N. Influence of Water Vapor on the Spatial Oscillations of the Average Electron Energy in Helium in a Constant Electric Field. Phys. Wave Phen. 31, 355–362 (2023). https://doi.org/10.3103/S1541308X23050023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X23050023

Keywords:

Navigation