Skip to main content
Log in

Kinetics of Energetic O Ions in the Discharge Plasmas of Water Vapor and H2O-Containing Mixtures

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The process of relaxation of energetic O ions formed via dissociative attachment of electrons to molecules in the discharge plasmas of water vapor and H2O: O2 mixtures in a strong electric field is studied by the Monte Carlo method. The probability of energetic ions being involved in threshold ion–molecular processes is calculated. It is shown that several percent of energetic O ions formed via electron attachment to H2O molecules in the course of plasma thermalization transform into OH ions via charge exchange or are destroyed with the formation of free electrons. The probabilities of charge exchange of O ions and electron detachment from them increase significantly (up to 90%) when O ions are formed via electron attachment to O2 molecules in water vapor with an oxygen additive. This effect decreases with increasing oxygen fraction in the mixture but remains appreciable even when the fraction of H2O molecules in the H2O: O2 mixture does not exceed several percent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fridman, Plasma Chemistry (Cambridge University Press, Cambridge, 2008).

    Book  Google Scholar 

  2. M. G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, and J. L. Zimmermann, New J. Phys. 11, 115012 (2009).

    Article  ADS  Google Scholar 

  3. P. J. Bruggeman, M. J. Kushner, B. R. Locke, J. G. E. Gardeniers, W. G. Graham, D. B. Graves, R. C. H. M. Hofman-Caris, D. Maric, J. P. Reid, E. Ceriani, D. Fernandez Rivas, J. E. Foster, S. C. Garrick, Y. Gorbanev, S. Hamaguchi, et al., Plasma Sources Sci. Technol. 25, 053002 (2016).

    Article  ADS  Google Scholar 

  4. S. V. Avtaeva, A. A. General, and V. A. Kel’man, J. Phys. D 43, 315201 (2010).

    Article  Google Scholar 

  5. L. W. Sieck, J. T. Herron, and D. S. Green, Plasma Chem. Plasma Process. 20, 235 (2000).

    Article  Google Scholar 

  6. I. A. Soloshenko, V. V. Tsiolko, S. S. Pogulay, A. G. Kalyuzhnaya, V. Yu. Bazhenov, and A. I. Shchedrin, Plasma Sources Sci. Technol. 18, 045019 (2009).

    Article  ADS  Google Scholar 

  7. A. V. Filippov, I. N. Derbenev, N. A. Dyatko, S. A. Kurkin, G. B. Lopantseva, A. F. Pal’, and A. N. Starostin, JETP 125, 246 (2017).

    Article  ADS  Google Scholar 

  8. I. Gallimberti, Pure Appl. Chem. 60, 663 (1988).

    Article  Google Scholar 

  9. D. X. Liu, P. Bruggeman, F. Iza, M. Z. Rong, and M. G. Kong, Plasma Sources Sci. Technol. 19, 025018 (2010).

    Article  ADS  Google Scholar 

  10. T. Murakami, K. Niemi, T. Gans, D. O’Connell, and W. G. Graham, Plasma Sources Sci. Technol. 22, 015003 (2013).

    Article  ADS  Google Scholar 

  11. A. Tavant and M. A. Lieberman, J. Phys. D 49, 465201 (2016).

    Article  ADS  Google Scholar 

  12. D. Liu, B. Sun, F. Iza, D. Xu, X. Wang, M. Rong, and M. G. Kong, Plasma Sources Sci. Technol. 26, 045009 (2017).

    Article  ADS  Google Scholar 

  13. W. Van Gaens and A. Bogaerts, J. Phys. D 46, 275201 (2013).

    Article  Google Scholar 

  14. J. A. Logan and M. B. McElroy, Planet. Space Sci. 25, 117 (1977).

    Article  ADS  Google Scholar 

  15. B. Shizgal and M. J. Lindenfeld, Planet. Space Sci. 27, 1321 (1979).

    Article  ADS  Google Scholar 

  16. O. Lie-Svendsen, M. H. Rees, K. Stamnes, and E. C. Whipple, Planet. Space Sci. 39, 929 (1991).

    Article  ADS  Google Scholar 

  17. J.-C. Gerard, D. V. Bisikalo, V. I. Shematovich, and J. W. Duff, J. Geophys. Res. 102, 285 (1997).

    Article  ADS  Google Scholar 

  18. M. E. Riley and M. K. Matzen, J. Chem. Phys. 63, 4787 (1975).

    Article  ADS  Google Scholar 

  19. V. A. Nikerov and G. V. Sholin, Kinetics of Degradation Processes (Energoatomizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  20. A. Panarese and S. Longo, Astrophys. J. 749, 23 (2012).

    Article  ADS  Google Scholar 

  21. A. Yu. Starikovskiy, Phil. Trans. A 373, 20140343 (2015).

    Article  ADS  Google Scholar 

  22. N. L. Aleksandrov, A. A. Ponomarev, and A. Yu. Starikovskiy, in Proceedings of the 54th AIAA Science and Technology Forum and Exposition, San Diego, CA, 2016, AIAA paper 2016–0957.

    Google Scholar 

  23. N. L. Aleksandrov, A. A. Ponomarev, and A. Yu. Starikovskiy, Combust. Flame 176, 181 (2017).

    Article  Google Scholar 

  24. A. A. Ponomarev and N. L. Aleksandrov, Plasma Sources Sci. Technol. 26, 044003 (2017).

    Article  ADS  Google Scholar 

  25. A. A. Ponomarev and N. L. Aleksandrov, J. Phys. Conf. Series 927, 012044 (2017).

    Article  Google Scholar 

  26. A. A. Ponomarev and N. L. Aleksandrov, Plasma Sources Sci. Technol. 24, 035001 (2015).

    Article  ADS  Google Scholar 

  27. S. Longo, Plasma Sources Sci. Technol. 15, 181 (2006).

    Article  ADS  Google Scholar 

  28. F. B. Brown, Trans. Am. Nucl. Soc. 71, 202 (1994).

    Google Scholar 

  29. B. M. Smirnov, Ions and Excited Atoms in Plasma (Atomizdat, Moscow, 1974) [in Russian].

    Google Scholar 

  30. V. Stojanovic, Z. Raspopovic, D. Maric, and Z. L. Petrovich, Eur. Phys. J. D 69, 63 (2015).

    Article  ADS  Google Scholar 

  31. G. J. H. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005).

    Article  ADS  Google Scholar 

  32. www.lxcat.net.

  33. P. Chantry and G. J. Schulz, Phys. Rev. Lett. 12, 449 (1964).

    Article  ADS  Google Scholar 

  34. P. G. Chantry and G. J. Schulz, Phys. Rev. 156, 134 (1967).

    Article  ADS  Google Scholar 

  35. J. Fedor, P. Cicman, B. Coupier, S. Feil, M. Winkler, K. Gluch, J. Husarik, D. Jaksch, B. Farizon, N. J. Mason, P. Scheier, and T. D. Mark, J. Phys. B 39, 3935 (2006).

    Article  ADS  Google Scholar 

  36. D. J. Haxton, T. N. Rescigno, and C. W. McGurdy, Phys. Rev. A 75, 012711 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Aleksandrov.

Additional information

Original Russian Text © A.A. Ponomarev, N.L. Aleksandrov, 2018, published in Fizika Plazmy, 2018, Vol. 44, No. 10, pp. 839–848.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomarev, A.A., Aleksandrov, N.L. Kinetics of Energetic O Ions in the Discharge Plasmas of Water Vapor and H2O-Containing Mixtures. Plasma Phys. Rep. 44, 986–995 (2018). https://doi.org/10.1134/S1063780X18100100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18100100

Navigation