Skip to main content
Log in

Active Control of Surface Plasmon Polaritons by Varying the Chemical Potential of Graphene in Graphene-Covered Metamaterial

  • WAVE PROCESSES AT MESO-, NANO-, AND MICROLEVELS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The surface plasmon polaritons (SPPs) propagating at the interface of graphene-covered metamaterial in terahertz range is investigated. The characteristic equation is derived by means of the equations of electromagnetic field and impedance boundary condition. Instead of adopting constant values for the parameters of the material, the lossy dispersion relations are used for obtaining these variable parameters. The numerical results show that it is possible to tune SPPs through changing the chemical potential of graphene. The propagation length can vary with the chemical potential of graphene, but the total energy flux is not sensitive to the chemical potential. And we made a simulation to validate the numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. M. Chamberlain, “Where optics meets electronics: Recent progress in decreasing the terahertz gap,” Philos. Trans. R. Soc. A 362, 199–213 (2004). https://doi.org/10.1098/rsta.2003.1312

    Article  ADS  Google Scholar 

  2. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20, 28017–28024 (2012). https://doi.org/10.1364/oe.20.028017

    Article  ADS  Google Scholar 

  3. S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997). https://doi.org/10.1063/1.118337

    Article  ADS  Google Scholar 

  4. I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, “Graphene-based nano-patch antenna for terahertz radiation,” Photonics Nanostruct. 10, 353–358 (2012). https://doi.org/10.1016/j.photonics.2012.05.01

    Article  ADS  Google Scholar 

  5. A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16–S50 (2003). https://doi.org/10.1088/1464-4258/5/4/353

    Article  ADS  Google Scholar 

  6. A. Palma, A. Alippi, L. Palmieri, and G. Socino, “Incidence angle and polarization dependence of light diffracted by acoustic surface waves,” J. Appl. Phys. 45, 1492–1497 (1974). https://doi.org/10.1063/1.1663449

    Article  ADS  Google Scholar 

  7. H. Raether, “Surface plasmons and roughness,” Surf. Polaritons 1 (1982) 331-403. https://doi.org/10.1016/B978-0-444-86165-8.50015-3

    Article  Google Scholar 

  8. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). https://doi.org/10.1038/nature01937

    Article  ADS  Google Scholar 

  9. J. B. Pendry, “Mimicking surface plasmons with structured surfaces,” Science 305 (5685), 847–848 (2004). https://doi.org/10.1126/science.1098999

    Article  ADS  Google Scholar 

  10. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97 (17), 176805 (2006). https://doi.org/10.1103/physrevlett.97.176805

    Article  ADS  Google Scholar 

  11. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 11–19 (2009). https://doi.org/10.1038/nmat1849

    Article  Google Scholar 

  12. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320 (5881), 1308–1308 (2008). https://doi.org/10.1126/science.1156965

    Article  ADS  Google Scholar 

  13. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–134 (2005). https://doi.org/10.1016/j.physrep.2004.11.001

    Article  ADS  Google Scholar 

  14. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70 (1), 1–87 (2006). https://doi.org/10.1088/0034-4885/70/1/r01

    Article  ADS  Google Scholar 

  15. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, Ph. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012). https://doi.org/10.1038/nature11254

    Article  ADS  Google Scholar 

  16. S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, Ch.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching teraherz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11 (2012) 936-941. https://doi.org/10.1038/nmat3433

    Article  ADS  Google Scholar 

  17. S. Dai, Q. Ma, M. K. Liu, T. Andersen, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10, 682–686 (2015). https://doi.org/10.1038/nnano.2015.131

    Article  ADS  Google Scholar 

  18. Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene–silicon hybrid diode for terahertz waves,” Nat. Commun. 6, 7082 (2015). https://doi.org/10.1038/ncomms8082

    Article  ADS  Google Scholar 

  19. H. Cheng, S. Chen, P. Yu, J. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103, 151107 (2013). https://doi.org/10.1063/1.4833757

    Article  ADS  Google Scholar 

  20. F. Valmorra, G. Scalari, C. Maissen, W. Fu, and C. Schönenberger, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13, 3193–3198 (2013). https://doi.org/10.1021/nl4012547

    Article  ADS  Google Scholar 

  21. W. Gao, J. Shu, K. Reichel, D. V. Nickel, and Q. F. Xu, “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures,” Nano Lett. 14, 1242–1248 (2014). https://doi.org/10.1021/nl4041274

    Article  ADS  Google Scholar 

  22. S. F. Shi, B. Zeng, H. L. Han, X. Hong, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15, 372–377 (2014). https://doi.org/10.1021/nl503670d

    Article  ADS  Google Scholar 

  23. S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2017). https://doi.org/10.1016/j.carbon.2017.10.035

    Article  Google Scholar 

  24. M. Z. Yaqoob, A. Ghaffar, Majeed A. S. Alkanhal, M. Y. Naz, A. H. Alqahtani, and Y. Khan, “Tunable surface waves supported by graphene-covered left-handed material structures,” Opt. Commun. 489, 126874 (2021). https://doi.org/10.1016/j.optcom.2021.126874

    Article  Google Scholar 

  25. Y. J. Yu, Y. F. Wang, and Z. Y. Chen, “Tuning surface waves in graphene-covered metamaterial by varyingthe chemical potential of graphene,” Phys. Lett. A 418, 127708 (2021). https://doi.org/10.1016/j.physleta.2021.127708

    Article  Google Scholar 

  26. M. Naserpour, C. J. Zapata-Rodriguez, S. M. Vukovic, H. Pashaeiadl, and M. R. Belic, “Tunable invisibility cloaking by using isolated graphene-coated nanowires and dimers,” Sci. Rep. 7, 12186 (2017). https://doi.org/10.1038/s41598-017-12413-4

    Article  ADS  Google Scholar 

  27. F. H. L. Koppensich, D. E. Chang, and F. J. G. García de Abajo, “Graphene plasmonics: A platform for strong light–matter interactions,” Nano Lett. 11, 3370–3377 (2011). https://doi.org/10.1021/nl201771h

    Article  ADS  Google Scholar 

  28. W. J. Padilla, D. N. Basov, and D. R. Smith, “Negative refractive index metamaterials,” Mater. Today 9, 28–35 (2006). https://doi.org/10.1016/s1369-7021(06)71573-5

    Article  Google Scholar 

  29. D. A. Evseev, D. G. Sannikov, and D. I. Sementsov, “Surface plasmon polaritons at the interface between dielectric and anisotropic nanocomposite,” J. Commun. Technol. Electron. 60, 158–165 (2015). https://doi.org/10.1134/s1064226915020047

    Article  Google Scholar 

  30. A. V. Kats, S. Savel’ev, V. A. Yampol’skii, and F. Nori, “Left-handed interfaces for electromagnetic surface waves,” Phys. Rev. Lett. 98, 073901 (2007). https://doi.org/10.1103/physrevlett.98.073901

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant nos. 11874050 and 12075315).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Chen.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ADDITIONAL INFORMATION

The data that support the findings of this study are available upon reasonable request from the authors.

Additional information

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yu, Y., Chen, Z. et al. Active Control of Surface Plasmon Polaritons by Varying the Chemical Potential of Graphene in Graphene-Covered Metamaterial. Phys. Wave Phen. 30, 298–305 (2022). https://doi.org/10.3103/S1541308X22050119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X22050119

Keywords:

Navigation