Skip to main content
Log in

Investigation of Deuterium Substitution Effects in a Polymer Membrane Using IR Fourier Spectrometry

  • Spectroscopy of Condensed States
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Experiments on IR Fourier spectrometry of a Nafion polymer membrane swollen in water are described. The dynamics of Nafion swelling is studied in relation to the deuterium content in water. It has turned out that, if the polymer swells in waters with different deuterium contents, a considerable confinement effect is observed, which, in this case, manifests itself in that the transmittance of IR radiation of water that is enclosed within a region with a size of ~100 μm differs from that of water that is inside nanometer pores of the polymer membrane. In addition, the transmittance of Nafion swollen in water measured at a wavelength of λ = 1.92 μm (spectral minimum) experiences a local minimum in the deuterium concentration range 102 < C < 103 ppm, irrespective of the soaking time of the polymer in deuterated water. Finally, the effect of the deuterium substitution of the residual water present in the volume of the membrane has been revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Mauritz and R. B. Moore, Chem. Rev. 104, 4535 (2004). doi 10.1021/cr0207123

    Article  Google Scholar 

  2. S. Srinivasan, J. Electrochem. Soc. 136, 41 (1989). doi 10.1149/1.2096647

    Article  ADS  Google Scholar 

  3. K. D. Kreuer, J. Membr. Sci. 185, 29 (2001). doi 10.1016/S0376-7388(00)00632-3

    Article  Google Scholar 

  4. C. Heitner-Wirguin, J. Membr. Sci. 120, 1 (1996). doi 10.1016/0376-7388(96)00155-X

    Article  Google Scholar 

  5. T. D. Gierke, G. E. Munn, and F. C. Wilson, J. Polym. Sci., Polym. Phys. Ed. 19, 1687 (1981).

    Article  ADS  Google Scholar 

  6. G. Gebel and P. Aldebert, Polymer 34, 333 (1993). doi 10.1016/0032-3861(93)90086-P

    Article  Google Scholar 

  7. M. Fujimura, T. Hashimoto, and H. Kawai, Macromolecules 15, 136 (1982). doi 10.1021/ma00229a028

    Article  ADS  Google Scholar 

  8. B. Dreyfus, G. Gebel, P. Aldebert, M. Pineri, M. Escoubes, and M. Thomas, J. Phys. (Paris) 51, 1341 (1990). doi 10.1051/jphys:0199000510120134100

    Article  Google Scholar 

  9. G. Gebel and J. Lambard, Macromolecules 30, 7914 (1997). doi 10.1021/ma970801v

    Article  ADS  Google Scholar 

  10. R. Wodzki, A. Narebska, and W. K. Nioch, J. Appl. Polym. Sci. 30, 769 (1985). doi 10.1002/app.1985.070300225

    Article  Google Scholar 

  11. G. Gebel, Polymer 41, 5829 (2000). doi 10.1016/S0032-3861(99)00770-3

    Article  Google Scholar 

  12. M. Bass, A. Berman, A. Singh, O. Konovalov, and V. Freger, Macromolecules 44, 2893 (2011). doi 10.1021/ma102361f

    Article  ADS  Google Scholar 

  13. B. Chai and G. H. Pollack, J. Phys. Chem. B 114, 5371 (2010). doi 10.1021/jp100200y

    Article  Google Scholar 

  14. G. H. Pollack, The Fourth Phase of Water (Ebner and Sons, Seattle, WA, 2013).

    Google Scholar 

  15. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, New York, 2007).

    Book  Google Scholar 

  16. M. Falk, Can. J. Chem. 58, 1495 (1980). doi 10.1139/v80-237

    Article  Google Scholar 

  17. A. I. Karelin, R. R. Kayumov, and E. A. Sanginov, Spectrochim. Acta, A 178, 94 (2017). doi 10.1016/j.saa.2017.02.002

    Article  ADS  Google Scholar 

  18. E. A. Sanginov, R. R. Kayumov, and L. V. Shmygleva, Solid State Ionics 300, 26 (2017). doi 10.1016/j.ssi.2016.11.017

    Article  Google Scholar 

  19. M. T. Taghizadeh and M. Vatanparast, J. Marine Sci. Eng. 28, 778 (2017). doi 10.1007/s10854-016-5590-2

    Google Scholar 

  20. V. O. Kollath and K. Karan, Phys. Chem. Chem. Phys. 18, 26144 (2016). doi 10.1039/C6CP04457C

    Article  Google Scholar 

  21. J. Malis, P. Mazur, and M. Paidar, Int. J. Hydrogen Energy 41, 2177 (2016). doi 10.1016/j.ijhydene.2015.11.102

    Article  Google Scholar 

  22. T. J. Zimudzi and M. A. Hickner, ACS Macro Lett. 5, 83 (2016). doi 10.1021/acsmacrolett.5b00800

    Article  Google Scholar 

  23. S. B. Smedley, Y. Chang, and C. Bae, Solid State Ionics 275, 66 (2015). doi 10.1016/j.ssi.2015.03.020

    Article  Google Scholar 

  24. K. Feng, L. Hou, and B. Tang, Phys. Chem. Chem. Phys. 17, 9106 (2015). doi 10.1039/C5CP00203F

    Article  Google Scholar 

  25. S. B. Black, Y. Chang, and C. Bae, J. Phys. Chem. B 117, 16266 (2013). doi 10.1021/jp406242h

    Article  Google Scholar 

  26. I. Kendrick, A. Yakaboski, and E. Kingston, J. Polym. Sci., Part B 51, 1329 (2013). doi 10.1002/polb.23348

    Article  Google Scholar 

  27. M.-C. Ferrari, J. Catalano, and M. G. Baschetti, Macromolecules 45, 1901 (2012). doi 10.1021/ma202099p

    Article  ADS  Google Scholar 

  28. M. Danilczuk, L. Lancuki, and S. Schlick, ACS Macro Lett. 1, 280 (2012). doi 10.1021/mz200100s

    Article  Google Scholar 

  29. K. Kunimatsu, B. Bae, and K. Miyatake, J. Phys. Chem. B 115, 4315 (2011). doi 10.1021/jp112300c

    Article  Google Scholar 

  30. S. Liu, A. J. A. Aquino, and C. Korzeniewski, Langmuir 29, 13890 (2013). doi 10.1021/la402497w

    Article  Google Scholar 

  31. J. C. Pope, H. Sue, and T. Bremner, Polymer 55, 4577 (2014). doi 10.1016/j.polymer.2014.07.027

    Article  Google Scholar 

  32. L. V. Vinogradova, G. Toeroek, and V. T. Lebedev, Russ. J. Appl. Chem. 85, 1594 (2012). doi 10.1134/S1070427212100217

    Article  Google Scholar 

  33. L. Hanykova, J. Labuta, and J. Spevacek, Polymer 47, 6107 (2006). doi 10.1016/j.polymer.2006.06.061

    Article  Google Scholar 

  34. I. Lakatos and J. Lakatos-Szabo, Colloid. Surf., A 246, 9 (2004). doi 10.1016/j.colsurfa.2004.06.035

    Article  Google Scholar 

  35. P. Kujawa and F. M. Winnik, Macromolecules 34, 4130 (2001). doi 10.1021/ma002082h

    Article  ADS  Google Scholar 

  36. S. V. Gudkov, M. E. Astashev, V. I. Bruskov, V. A. Kozlov, S. D. Zakharov, and N. F. Bunkin, Entropy 16, 6166 (2014). doi 10.3390/e16116166

    Article  ADS  Google Scholar 

  37. N. F. Bunkin, V. S. Gorelik, V. A. Kozlov, A. V. Shkirin, and N. V. Suyazov, J. Phys. Chem. B 118, 3372 (2014). doi 10.1021/jp4100729

    Article  Google Scholar 

  38. N. F. Bunkin, V. S. Gorelik, V. A. Kozlov, A. V. Shkirin, and N. V. Suyazov, J. Exp. Theor. Phys. 119, 924 (2014). doi 10.1134/S106377611411003X

    Article  ADS  Google Scholar 

  39. N. F. Bunkin, G. A. Lyakhov, V. A. Kozlov, A. V. Shkirin, and I. I. Molchanov, Phys. Wave Phenom. 25, 259 (2017). doi 10.3103/S1541308X17040045

    Article  ADS  Google Scholar 

  40. H. Craig, Science (Washington, DC, U. S.) 133, 1833 (1961). doi 10.1126/science.133.3467.1833

    Article  ADS  Google Scholar 

  41. J.-J. Max and C. Chapados, J. Chem. Phys. 131, 184505 (2009). doi 10.1063/1.3258646

    Article  ADS  Google Scholar 

  42. J. Workman, Jr. and L. Weyer, Practical Guide and Spectral Atlas for Interpretive Near-Infrared Spectroscopy (CRC, Boca Raton, FL, 2013).

    Google Scholar 

  43. T. H. van der Loop, N. Ottosson, S. Lotze, E. Kentzinger, T. Vad, W. F. C. Sager, H. J. Bakker, and S. Woutersenet, J. Chem. Phys. 141, 18C535 (2014). doi 10.1063/1.4898380

    Google Scholar 

  44. M. Plazanet, R. Torre, and F. Sacchetti, J. Mol. Liq. 219, 1161 (2016). doi 10.1016/j.molliq.2016.01.079

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Bunkin.

Additional information

Original Russian Text © N.F. Bunkin, A.A. Balashov, A.V. Shkirin, V.S. Gorelik, A.E. Primenko, I.I. Molchanov, Vu Minh Tuan, N.G. Bolikov, I.S. Bereza, M.E. Astashev, S.V. Gudkov, V.A. Kozlov, 2018, published in Optika i Spektroskopiya, 2018, Vol. 125, No. 3, pp. 324–329.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunkin, N.F., Balashov, A.A., Shkirin, A.V. et al. Investigation of Deuterium Substitution Effects in a Polymer Membrane Using IR Fourier Spectrometry. Opt. Spectrosc. 125, 337–342 (2018). https://doi.org/10.1134/S0030400X18090072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18090072

Navigation