Skip to main content
Log in

Giant Kerr Nonlinearity for Three-Coupled-Quantum-Well Nanostructures

  • Nonlinear Optics of Nanostructures
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

A four level ladder scheme is employed for the realization of slow light large Kerr nonlinear indices in an asymmetric semiconductor three-coupled-quantum-well (TCQW) structure based on intersubband transitions. It is shown that a giant Kerr nonlinearity accompanied with negligible loss can be achieved by properly tuning the intensity of the control fields. A dressed state analysis is given to explain the origin of such a transparency based on slow light enhanced Kerr nonlinearity in this solid medium. In addition, we show that the three-photon detuning plays the important role in enhancing the third-order nonlinearity of the TCQW medium, and may provide new possibilities for technological applications in nonlinear optics and optical switching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.E. Harris, “Electromagnetically Induced Transparency,” Phys. Today. 50(7), 36 (1997) [DOI: doi.org/10.1063/1.881806].

    Article  Google Scholar 

  2. Ying Wu and Xiaoxue Yang, “Electromagnetically Induced Transparency in V -, Λ-, and Cascade- Type Schemes Beyond Steady-State Analysis,” Phys. Rev. A. 71(5), 053806 (2005) [DOI: doi.org/10.1103/ PhysRevA.71.053806].

    Article  ADS  Google Scholar 

  3. Zhiping Wang and Benli Yu, “High Refractive Index without Absorption in a Rare-Earth-Ion-Doped Optical Fiber,” Appl. Phys. A. 109, 725 (2012).

    Article  ADS  Google Scholar 

  4. J. Mompart and R. Corbalán, “Lasing without Inversion,” J. Opt. B: Quantum Semiclass. Opt. 2, R7 (2000).

    Article  ADS  Google Scholar 

  5. H.R. Hamedi, “Transient Absorption and Lasing without Inversion in an Artificial Molecule via Josephson Coupling Energy,” Laser Phys. Lett. 12, 035201 (2015).

    Article  ADS  Google Scholar 

  6. L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, “Light Speed Reduction to 17 Metres per Second in an Ultracold Atomic Gas,” Nature. 397, 594 (1999).

    Article  ADS  Google Scholar 

  7. M.M. Kash, V.A. Sautenkov, A.S. Zibrov, L. Hollberg, G.R. Welch, M.D. Lukin, Y. Rostovtsev, E.S. Fry, and M.O. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229 (1999) [DOI: doi.org/10.1103/PhysRevLett.82.5229].

    Article  ADS  Google Scholar 

  8. S.M. Ma, H. Xu, and B.S. Ham, “Electromagnetically- Induced Transparency and Slow Light in GaAs/AlGaAs Multiple Quantum Wells in a Transient Regime,” Opt. Exp. 17, 14902 (2009).

    Article  ADS  Google Scholar 

  9. Ying Wu, “Two-Color Ultraslow Optical Solitons via Four-Wave Mixing in Cold-Atom Media,” Phys. Rev. A. 71(5), 053820 (2005) [DOI: doi.org/10.1103/ PhysRevA.71.053820].

    Article  ADS  Google Scholar 

  10. Ying Wu and L. Deng, “Ultraslow Optical Solitons in a Cold Four-State Medium,” Phys. Rev. Lett. 93(14), 143904 (2004) [DOI: doi.org/10.1103/Phys-RevLett.93.143904].

    Article  ADS  Google Scholar 

  11. L. Li and G.X. Huang, “Slow-Light Solitons in Three-Level Atomic Systems Modified by a Microwave Field,” Europ. Phys. J. D. 58, 339 (2010).

    Article  ADS  Google Scholar 

  12. Wen-Xing Yang and Ray-Kuang Lee, “Slow Optical Solitons via Intersubband Transitions in a Semiconductor Quantum Well,” Europhys. Lett. 83, 14002 (2008).

    Article  ADS  Google Scholar 

  13. J.-H. Li, X.-Y. Lü, J.-M. Luo, and Q.-J. Huang, “Optical Bistability and Multistability via Atomic Coherence in an N-Type Atomic Medium,” Phys. Rev. A. 74(3), 035801 (2006) [DOI: doi.org/10.1103/PhysRevA.74.035801].

    Article  ADS  Google Scholar 

  14. Z. Wang and B. Yu, “Optical Bistability and Multistability via Dual Electromagnetically Induced TransparencyWindows,” J. Lumin. 132, 2452 (2012).

    Article  Google Scholar 

  15. Shili Li, Qiang Ge, Zhiping Wang, J.C. Martín, and Benli Yu, “Optical Bistability via an External Control Field in All-Fiber Ring Cavity,” Sci. Rep. 7, 8992 (2017).

    Article  ADS  Google Scholar 

  16. D. Zhang, J. Li, C. Ding, and X. Yang, “Control of Optical Bistability via an Elliptically Polarized Light in a Four-Level Tripod Atomic System,” Phys. Scripta. 85, 5401 (2012).

    MATH  Google Scholar 

  17. M. Sahrai, H.R. Hamedi, and M. Memarzadeh, “Kerr Nonlinearity and Optical Multi-Stability in a Four- Level Y-Type Atomic System,” J. Mod. Opt. 59, 980 (2012).

    Article  ADS  Google Scholar 

  18. Zhen Wang, Ai-Xi Chen, Yanfeng Bai, Wen-Xing Yang, and Ray-Kuang Lee, “Coherent Control of Optical Bistability in an Open Λ-Type Three-Level Atomic System,” J. Opt. Soc. Am. B. 29, 2891 (2012).

    Article  ADS  Google Scholar 

  19. Jia-Hua Li, “Controllable Optical Bistability in a Four-Subband Semiconductor Quantum Well System,” Phys. Rev. B. 75(15), 155329 (2007) [DOI: doi.org/10.1103/PhysRevB.75.155329].

    Article  ADS  Google Scholar 

  20. S.H. Asadpour, H.R. Hamedi, and H.R. Soleimani, “Optical Bistability and Multistability in an Open Ladder-Type Atomic System,” J. Mod. Opt. 60, 659 (2013).

    Article  ADS  Google Scholar 

  21. Y. Wu and X. Yang, “Giant Kerr Nonlinearities and Solitons in a Crystal of Molecular Magnets,” Appl. Phys. Lett. 91(9), 094104 (2007).

    Article  ADS  Google Scholar 

  22. Xiang-an Yan, Li-qiang Wang, Bao-yin Yin, Wenjuan Jiang, Huai-bin Zheng, Jian-ping Song, and Yan-peng Zhang, “Effect of Spontaneously Generated Coherence on Kerr Nonlinearity in a Four-Level Atomic System,” Phys. Lett. A. 372(42), 6456 (2008) [DOI: doi.org/10.1016/j.physleta.2008.08.056].

    Article  ADS  MATH  Google Scholar 

  23. H.R. Hamedi and M.R. Mehmannavaz, “Switching Feature of EIT-Based Slow Light Giant Phase- Sensitive Kerr Nonlinearity in a Semiconductor QuantumWell,” Phys. E. 66, 309 (2015).

    Article  Google Scholar 

  24. Wen-juan Jiang, Xiang’an Yan, Jian-ping Song, Huai-bin Zheng, Chuanxing Wu, Bao-yin Yin, and Yanpeng Zhanga, “Enhancement of Kerr Nonlinearity via Spontaneously Generated Coherence in a Four-Level N-Type Atomic System,” Opt. Commun. 282(1), 101 (2009) [DOI: doi.org/10.1016/ j.optcom.2008.08.054].

    Article  ADS  Google Scholar 

  25. S.H. Asadpour and H.R. Hamedi, “Giant Kerr Nonlinearity in an n-Doped Semiconductor Quantum Well,” Opt. Quantum Electron. 45, 11 (2013).

    Article  Google Scholar 

  26. H. Wang, D. Goorskey, and M. Xiao, “Dependence of Enhanced Kerr Nonlinearity on Coupling Power in a Three-Level Atomic System,” Opt. Lett. 27, 258 (2002).

    Article  ADS  Google Scholar 

  27. Sun Hui, Niu Yue-Ping, and Gong Shang-Qing, “Enhancement of Kerr Nonlinearity with Vanishing Absorption in a Tripod Scheme,” Chin. Phys. 16, 429 (2007).

    Article  ADS  Google Scholar 

  28. Yueping Niu and Shangqing Gong, “Enhancing Kerr Nonlinearity via Spontaneously Generated Coherence,” Phys. Rev. A. 73(5), 053811 (2006) [DOI: doi.org/10.1103/PhysRevA.73.053811].

    Article  ADS  Google Scholar 

  29. Wen-Xing Yang, Jing-Min Hou, and Ray-Kuang Lee, “Ultraslow Bright and Dark Solitons in Semiconductor Quantum Wells,” Phys. Rev. A. 77(3), 033838 (2008) [DOI: doi.org/10.1103/ PhysRevA.77.033838].

    Article  ADS  Google Scholar 

  30. Wen-Xing Yang, Jing-Min Hou, YuanYao Lin, and Ray-Kuang Lee, “Detuning Management of Optical Solitons in Coupled Quantum Wells,” Phys. Rev. A. 79(3), 033825 (2009) [DOI: doi.org/10.1103/Phys-RevA.79.033825].

    Article  ADS  Google Scholar 

  31. A. Joshi, “Phase-Dependent Electromagnetically Induced Transparency and Its Dispersion Properties in a Four-Level Quantum Well System,” Phys. Rev. B. 79(11), 115315 (2009) [DOI: doi.org/10.1103/Phys-RevB.79.115315].

    Article  ADS  Google Scholar 

  32. A. Imamoglu and R.J. Ram, “Semiconductor Lasers without Population Inversion,” Opt. Lett. 19, 1744 (1994).

    Article  ADS  Google Scholar 

  33. D.E. Nikonov, A. Imamoğlu, and M.O. Scully, “Fano Interference of Collective Excitations in Semiconductor Quantum Wells and Lasing without Inversion,” Phys. Rev. B. 59(19), 12212 (1999) [DOI: doi.org/10.1103/PhysRevB.59.12212].

    Article  ADS  Google Scholar 

  34. Hui Sun, Shangqing Gong, Yueping Niu, Shiqi Jin, Ruxin Li, and Zhizhan Xu, “Enhancing Kerr Nonlinearity in an Asymmetric Double Quantum Well via Fano Interference,” Phys. Rev. B. 74(15), 155314 (2006) [DOI: doi.org/10.1103/ PhysRevB.74.155314].

    Article  ADS  Google Scholar 

  35. Zhiping Wang and Hongyi Fan, “Phase-Dependent Optical Bistability and Multistability in a Semiconductor Quantum Well System,” J. Lumin. 130, 2084 (2010).

    Article  Google Scholar 

  36. Wei Yan, Tao Wang, XiaoMing Li, and YaJuan Jin, “Tunable Amplification and Absorption Properties in Double-Λ System of GaAs/AlGaAs Multiple QuantumWells,” Chin. Sci. Bull. 58, 53 (2013).

    Article  Google Scholar 

  37. E. Paspalakis, M. Tsaousidou, and A.F. Terzis, “Coherent Manipulation of a Strongly Driven Semiconductor Quantum Well,” Phys. Rev. B. 73(12), 125344 (2006) [DOI: doi.org/10.1103/ PhysRevB.73.125344].

    Article  ADS  Google Scholar 

  38. Yandong Peng, Yueping Niu, Yihong Qi, Haifeng Yao, and Shangqing Gong, “Optical Precursors with Tunneling-Induced Transparency in Asymmetric QuantumWells,” Phys. Rev. A. 83(1), 013812 (2011) [DOI: doi.org/10.1103/PhysRevA.83.013812].

    Article  ADS  Google Scholar 

  39. C. Sirtori, F. Capasso, D.L. Sivco, and A.Y. Cho, “Giant, Triply Resonant, Third-Order Nonlinear Susceptibility χ(3) 3ω in Coupled Quantum Wells,” Phys. Rev. Lett. 68(7), 1010 (1992) [DOI: doi.org/10.1103/PhysRevLett.68.1010].

    Article  ADS  Google Scholar 

  40. C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a Sum Rule Associated with Bound-to-Bound and Bound-to-Continuum Intersubband Transitions in Quantum Wells,” Phys. Rev. B. 50(12), 8663 (1994) [DOI: doi.org/10.1103/ PhysRevB.50.8663].

    Article  ADS  Google Scholar 

  41. Xiangying Hao, Jiahua Li, and Xiaoxue Yang, “Mid- Infrared EfficientGeneration by Resonant Four-Wave Mixing in a Three-Coupled-Quantum-Well Nanostructure,” Opt. Commun. 282, 3339 (2009).

    Article  ADS  Google Scholar 

  42. Deng Li, “Steady-State Analysis of Three-Photon Absorption Spectra via Density-Matrix Method in a Three Coupled-Quantum-Well Nanostructure,” Chin. Phys. B. 19, 054205 (2010).

    Article  ADS  Google Scholar 

  43. M.D. Frogley, J.F. Dynes, M. Beck, J. Faist, and C.C. Phillips, “Gain without Inversion in Semiconductor Nanostructures,” Nature Mater. 5, 175 (2006).

    Article  ADS  Google Scholar 

  44. J.F. Dynes, M.D. Frogley, M. Beck, J. Faist, and C.C. Phillips, “AC Stark Splitting and Quantum Interference with Intersubband Transitions in Quantum Wells,” Phys. Rev. Lett. 94, 157403 (2005).

    Article  ADS  Google Scholar 

  45. J. Faist, F. Capasso, C. Sirtori, K.W. West, and L.N. Pfeiffer, “Controlling the Sign of Quantum Interference by Tunnelling from Quantum Wells,” Nature. 390, 589 (1997).

    Article  ADS  Google Scholar 

  46. G.B. Serapiglia, E. Paspalakis, C. Sirtori, K.L. Vodopyanov, and C.C. Phillips, “Laser-Induced Quantum Coherence in a Semiconductor Quantum Well,” Phys. Rev. Lett. 84(5), 1019 (2000) [DOI: doi.org/ 10.1103/PhysRevLett.84.1019].

    Article  ADS  Google Scholar 

  47. C.-R. Lee, Y.-C. Li, F.K. Men, C.-H. Paoa, Y.-C. Tsai, and J.-F. Wang, “Model for an Inversionless Two- Color Laser,” Appl. Phys. Lett. 86, 201112 (2005).

    Article  ADS  Google Scholar 

  48. J.F. Dynes, M.D. Frogley, J. Rodger, and C.C. Phillips, “Optically Mediated Coherent Population Trapping in Asymmetric Semiconductor QuantumWells,” Phys. Rev. B. 72(8), 085323 (2005) [DOI: doi.org/ 10.1103/PhysRevB.72.085323].

    Article  ADS  Google Scholar 

  49. Jia-Hua Li, “Coherent Control of Optical Bistability in Tunnel-Coupled Double Quantum Wells,” Opt. Commun. 274, 366 (2007).

    Article  ADS  Google Scholar 

  50. Hui Sun, Yueping Niu, Ruxin Li, Shiqi Jin, and Shangqing Gong, “Tunneling-Induced Large Cross- PhaseModulation in an Asymmetric QuantumWell,” Opt. Lett. 32(17), 2475 (2007).

    Article  ADS  Google Scholar 

  51. Ying Wu and Xiaoxue Yang, “Highly Efficient Four- Wave Mixing in Double-Λ System in Ultraslow Propagation Regime,” Phys. Rev. A. 70(5), 053818 (2004) [DOI: doi.org/10.1103/PhysRevA.70.053818].

    Article  ADS  Google Scholar 

  52. Ying Wu, J. Saldana, and Yifu Zhu, “Large Enhancement of Four-Wave Mixing by Suppression of Photon Absorption from Electromagnetically Induced Transparency,” Phys. Rev. A. 67(1), 013811 (2003) [DOI: doi.org/10.1103/PhysRevA.67.013811].

    Article  ADS  Google Scholar 

  53. H.R. Hamedi, A. Khaledi-Nasab, A. Raheli, and M. Sahrai, “Coherent Control of Optical Bistability and Multistability via Double Dark Resonances (DDRs),” Opt. Commun. 312, 117 (2014) [DOI: doi.org/10.1016/j.optcom.2013.08.081].

    Article  ADS  Google Scholar 

  54. H.R. Hamedi and S.H. Asadpour, “Realization of Optical Bistability and Multistability in Landau- Quantized Graphene,” J. Appl. Phys. 117, 183101 (2015) [DOI: doi.org/10.1063/1.4919893].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Raheli.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raheli, A. Giant Kerr Nonlinearity for Three-Coupled-Quantum-Well Nanostructures. Phys. Wave Phen. 26, 182–190 (2018). https://doi.org/10.3103/S1541308X18030020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X18030020

Navigation