Skip to main content
Log in

Control of a Piezo Actuator to Adjust the Reflective Surface of the Space-Based Reflector

  • Radio Engineering and Communication
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

The task of adjusting and maintaining the shape of the radio-reflective network of a largesized space-based reflector is considered. The possibility of using piezo actuators to solve this problem is estimated. The urgency of the actuator control problem for a wide range of tasks related to the space and aircraft equipment is shown. Different types of control for the chosen mathematical model of a piezo actuator are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mel’nikov, V.M., Matyushenko, I.N., Chernova, N.A., and Kharlov, B.N., Problems of Building Large-Sizes Structures in Space, Trudy MAI, 2014, no. 78.

    Google Scholar 

  2. Zhengrong Chu, Zongquan Deng, Xiaozhi Qi, and Bing Li, Modeling and Analysis of a Large Deployable Antenna Structure, Acta Astronautica, 2014, vol. 95, pp. 51–60.

    Google Scholar 

  3. Yiqun Zhang, Wenrui Ru, Guigeng Yang, and Na Li, Deployment Analysis Considering the Cable–Net Tension Effect for Deployable Antennas, Aerospace Science and Technology, 2016, vol. 48, pp. 193–202.

    Google Scholar 

  4. Yiqun Zhang, Na Li, Guigeng Yang, and Wenrui Ru, Dynamic Analysis of the Deployment for Mesh Reflector Deployable Antennas with the Cable–Net Structure, Acta Astronautica, 2017, vol. 131, pp. 182–189.

    Google Scholar 

  5. Kabanov, S.A., Krivushov, A.I., and Mitin, F.V., Modeling of Joint Deployment of Units of the Large-Sized Transformable Space-Based Reflector, Trudy SPIIRAN, 2017, no. 5(54), pp. 130–151.

    Google Scholar 

  6. Eremin, M.M. and Borisov, E.A., RU Patent 2603707, Byull. Izobret., 2016, no. 33.

    Google Scholar 

  7. Tanaka, H. and Natori, M.C., Shape Control of Cable Net Structures Based on Concept of Self-Equilibrated Stresses, JSME International Journal Series C: Mechanical Systems, Machine Elements and Manufacturing 2006, 49 (4), pp. 1067–1072.

    Google Scholar 

  8. Pankratov, V.M., Barulina, M.A., and Krys’ko, A.V., The Effect of Detuning of the Partial Frequency of MEMS Gyros Sensing Elements on the Amplitude-Frequency Response, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 2, pp. 99–105 [Russian Aeronautics (Engl. Transl.), vol. 60, no. 2, pp. 270–277].

    Google Scholar 

  9. Belousov, E.O., Noise Suppression Method for MEMS Angular Velocity Sensors, Trudy MAI, 2016, no. 90.

    Google Scholar 

  10. Khramtsov, A.M., Strain-Stress State of Interacting Members of a Piezo Actuator, Cand. Sc. (Phys.-Math.) Dissertation, Tomsk: Tomsk State Univ., 2017.

    Google Scholar 

  11. Bobtsov, A.A., Boikov, V.I., Bystrov, S.V., and Grigor’ev, V.V., Ispolnitel’nye ustroistva i sistemy dlya mikroperemeshchenii (Actuating Devices and Systems for Micro Movements), St. Petersburg: SPB GU ITMO, 2011.

    Google Scholar 

  12. Barnes, M.R., Form Finding and Analysis of Tension Structures by Dynamic Relaxation, Int. Journal of Space Structures, 1999, vol. 14, no. 2, pp. 89–104.

    Article  Google Scholar 

  13. Tanaka, H., Shimozono, N., and Natori, M.C., A Design Method for Cable Network Structures Considering the Flexibility of Supporting Structures, Trans. of the Japan Society for Aeronautical and Space Sciences, 2008, vol. 50, (170), pp. 267–273.

    Book  Google Scholar 

  14. Hasan, Z., Shape and Failure Control of Composite Laminates using Piezoelectric Actuators, Proc. COMSOL Conference, Boston, 2010, pp. 314–321.

    Google Scholar 

  15. Hasan, Z. and Muliana, A., Analysis and Control of Smart Composite Laminates Using Piezoelectric Materials, Proc. 26th Annual Technical Conference of the American Society for Composites 2011: 2nd Joint US–Canada Conference on Composites, Montreal, 2011, vol. 1, pp. 530–546.

    Google Scholar 

  16. Gajbhiye, S.C., Upadhyay, S.H., and Harsha, S.P., Nonlinear Vibration Analysis of Piezo-Actuated Flat Thin Membrane, Journal of Vibration and Control, 2015, vol. 21, no. 6, pp. 1162–1170.

    Article  Google Scholar 

  17. Nikol’skii, A.A., Tochnye dvuhkanal’nye sledyashchie elektroprivody s p’ezokompensatorami, (The Precise Two-Channel Servo Electric Drives with Piezocompensators), Moscow: Energoatomizdat, 1988.

    Google Scholar 

  18. Spravochnik po teorii avtomaticheskogo upravleniya (Handbook on the Theory of Automatic Control), Krasovskii, A.A., Ed., Moscow: Nauka, 1987.

  19. Kabanov, S.A., Upravlenie sistemami na prognoziruyushchikh modelyakh (Control of Systems on Predictive Models), St. Petersburg: SPbGU, 1997.

    Google Scholar 

  20. Fel’dbaum, A.A., Optimal Processes in Automatic Control Systems, Avtomatika i Telemekhanika, 1953, vol. 14, no. 6, pp. 712–728.

    Google Scholar 

  21. Malyshev, V.V., Metody optimizatsii v zadachakh sistemnogo analiza i upravleniya (Optimization Methods in Problems of System Analysis and Control), Moscow: MAI-Print, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. V. Mitin.

Additional information

Original Russian Text © S.A. Kabanov, F.V. Mitin, A.I. Krivushov, E.A. Ulybushev, 2018, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2018, No. 4, pp. 111–116.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabanov, S.A., Mitin, F.V., Krivushov, A.I. et al. Control of a Piezo Actuator to Adjust the Reflective Surface of the Space-Based Reflector. Russ. Aeronaut. 61, 629–635 (2018). https://doi.org/10.3103/S1068799818040189

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799818040189

Keywords

Navigation