Skip to main content
Log in

Graphene Modified ZnO/Polyaniline Electrode Material for Electrochemical Sensing of Phenol Compounds

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This study was aimed at developing an electrochemical sensor for the detection of phenol, a harmful organic pollutant for both humans and the environment. The sensor was developed by investigating metal oxide and conductive polymer modifiers on graphene electrodes to enhance the sensitivity for the phenol detection. In this research, the production of an electrode is discussed that is very sensitive to phenolic compounds using a composite of zinc oxide and polyaniline modified graphene (Gr/ZnO@PANi). The Gr/ZnO nanocomposite synthesis was carried out using a simple hydrothermal method and modification of PANi on the electrode surface by the electropolymerization method. It was found that the Gr/ZnO@PANi composite electrode can detect phenol effectively, with an efficient electron transfer occurring at a low oxidation potential. Additionally, it was observed that the electrode sensitivity to the phenol concentration was remarkably linear within a range of 10–6–10–1 M, and its limit of detection was as low as 0.0515 μM. Furthermore, the Gr/ZnO@PANi composite electrode exhibited excellent stability in detecting phenolic compounds, as indicated by the low stability coefficients of the relative standard deviation for reproducibility (0.37%) and the randomized strategic demand reduction (1.02%). Those findings suggest that the new Gr/ZnO@ PANi composite electrode is a promising tool for the sensitive detection of phenol in the environment, which could contribute to mitigating its negative impacts on human health and ecosystems. Future studies could explore the potential applications of this sensor for detecting other types of pollutants as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Mandal, A., Mukhopadhyay, P., and Das, S.K., The study of adsorption efficiency of rice husk ash for removal of phenol from wastewater with low initial phenol concentration, SN Appl. Sci., 2019, vol. 1, p. 192. https://doi.org/10.1007/s42452-019-0203-3

    Article  Google Scholar 

  2. Carregosa, D., Pinto, C., Ávila-Gálvez, M.Á., Bastos, P., et al., A look beyond dietary (poly)phenols: The low molecular weight phenolic metabolites and their concentrations in human circulation, Compr. Rev. Food. Sci. Food. Saf., 2022, vol. 21, p. 3931. https://doi.org/10.1111/1541-4337.13006

    Article  Google Scholar 

  3. Wu, P., Zhang, Z., Luo, Y., Bai, Y., et al., Bioremediation of phenolic pollutants by algae—current status and challenges, Bioresour. Technol., 2022, vol. 350, p. 126930. https://doi.org/10.1016/j.biortech.2022.126930

    Article  Google Scholar 

  4. Talebi, M., Talebi, M., Farkhondeh, T., and Samarghandian, S., Molecular mechanism-based therapeutic properties of honey, Biomed. Pharmacother., 2020, vol. 130, p. 110590. https://doi.org/10.1016/j.biopha.2020.110590

    Article  Google Scholar 

  5. Nurdin, M., Maulidiyah, M., Watoni, A.H., Armawansa, A., et al., Nanocomposite design of graphene modified TiO2 for electrochemical sensing in phenol detection, Korean J. Chem. Eng., 2022, vol. 39, p. 209. https://doi.org/10.1007/s11814-021-0938-6

    Article  Google Scholar 

  6. Zhu, Z., Zhang, Y., Wang, J., Li, X., et al., Sugaring-out assisted liquid–liquid extraction coupled with high performance liquid chromatography-electrochemical detection for the determination of 17 phenolic compounds in honey, J. Chromatogr. A, 2019, vol. 1601, p. 104. https://doi.org/10.1016/j.chroma.2019.06.023

    Article  Google Scholar 

  7. Shishov, A., Gagarionova, S., and Bulatov, A., Deep eutectic mixture membrane-based microextraction: HPLC-FLD determination of phenols in smoked food samples, Food Chem., 2020, vol. 314, p. 126097. https://doi.org/10.1016/j.foodchem.2019.126097

    Article  Google Scholar 

  8. Liu, L., Meng, W.-K., Li, L., Xu, G.-J., et al., Facile room-temperature synthesis of a spherical mesoporous covalent organic framework for ultrasensitive solid-phase microextraction of phenols prior to gas chromatography-tandem mass spectrometry, Chem. Eng. J., 2019, vol. 369, p. 920. https://doi.org/10.1016/j.cej.2019.03.148

    Article  Google Scholar 

  9. Mayorga-Martinez, C.C., Gusmão, R., Sofer, Z., and Pumera, M., Pnictogen-based enzymatic phenol biosensors: Phosphorene, arsenene, antimonene, and bismuthene, Angew. Chemie, Int. Ed., 2019, vol. 58, p. 134. https://doi.org/10.1002/anie.201808846

    Article  Google Scholar 

  10. Cheng, T.S., Nasir, M.Z.M., Ambrosi, A., and Pumera, M., 3D-printed metal electrodes for electrochemical detection of phenols, Appl. Mater. Today, 2017, vol. 9, p. 212. https://doi.org/10.1016/j.apmt.2017.07.005

    Article  Google Scholar 

  11. Maulidiyah, M., Azis, T., Lindayani, L., Wibowo, D., et al., Sol-gel TiO2/carbon paste electrode nanocomposites for electrochemical-assisted sensing of fipronil pesticide, J. Electrochem. Sci. Technol., 2019, vol. 10, no. 4, p. 394. https://doi.org/10.33961/jecst.2019.00178

    Article  Google Scholar 

  12. Ferrari, A.G.-M., Rowley-Neale, S.J., and Banks, C.E., Screen-printed electrodes: Transitioning the laboratory in-to-the field, Talanta Open, 2021, vol. 3, p. 100032. https://doi.org/10.1016/j.talo.2021.100032

    Article  Google Scholar 

  13. Wibowo, D., Sufandy, Y., Irwan, I., Azis, T., et al., Investigation of nickel slag waste as a modifier on graphene-TiO2 microstructure for sensing phenolic compound, J. Mater. Sci.: Mater. Electron., 2020, vol. 31, p. 14375. https://doi.org/10.1007/s10854-020-03996-2

    Article  Google Scholar 

  14. Pwavodi, P.C., Ozyurt, V.H., Asir, S., and Ozsoz, M., Electrochemical sensor for determination of various phenolic compounds in wine samples using Fe3O4 nanoparticles modified carbon paste electrode, Micromachines, 2021, vol. 12, no. 3, p. 312. https://doi.org/10.3390/mi12030312

    Article  Google Scholar 

  15. Lima, A.P., Souza, R.C., Silva, M.N.T., Goncalves, R.F., et al., Influence of Al2O3 nanoparticles structure immobilized upon glassy-carbon electrode on the electrocatalytic oxidation of phenolic compounds, Sens. Actuat. B, Chem., 2018, vol. 262, p. 646. https://doi.org/10.1016/j.snb.2018.02.028

    Article  Google Scholar 

  16. Govindhan, M., Lafleur, T., Adhikari, B. and Chen, A., Electrochemical sensor based on carbon nanotubes for the simultaneous detection of phenolic pollutants, Electroanalysis, 2015, vol. 27, p. 902. https://doi.org/10.1002/elan.201400608

    Article  Google Scholar 

  17. Wu, Y., Deng, P., Tian, Y., Feng, J., et al., Simultaneous and sensitive determination of ascorbic acid, dopamine and uric acid via an electrochemical sensor based on PVP-graphene composite, J. Nanobiotechnol., 2020, vol. 18, p. 112. https://doi.org/10.1186/s12951-020-00672-9

    Article  Google Scholar 

  18. Swamy, N.K., Mohana, K.N.S., Hegde, M.B., Madhusudana, A.M., et al., Fabrication of graphene nanoribbon-based enzyme-free electrochemical sensor for the sensitive and selective analysis of rutin in tablets, J. Appl. Electrochem., 2021, vol. 51, p. 1047. https://doi.org/10.1007/s10800-021-01557-x

    Article  Google Scholar 

  19. Abdullayeva, N., Altaf, C.T., Mintas, M., Ozer, A., et al., Investigation of strain effects on photoelectrochemical performance of flexible ZnO electrodes, Sci. Rep., 2019, vol. 9, p. 11006. https://doi.org/10.1038/s41598-019-47546-1

    Article  Google Scholar 

  20. Kumar, P., Kumar, A., Rizvi, M.A., Moosvi, S.K., et al., Surface, optical and photocatalytic properties of Rb doped ZnO nanoparticles, Appl. Surf. Sci., 2020, vol. 514, p. 145930. https://doi.org/10.1016/j.apsusc.2020.145930

    Article  Google Scholar 

  21. Deshmukh, M.A., Gicevicius, M., Ramanaviciene, A., Shirsat, M.D., et al., Hybrid electrochemical/electrochromic Cu(II) ion sensor prototype based on PANI/ITO-electrode, Sens. Actuat. B Chem., 2017, vol. 248, p. 527. https://doi.org/10.1016/j.snb.2017.03.167

    Article  Google Scholar 

  22. Huang, Y., Bao, F., Ji, M., Hu, Y., et al., A polyaniline-modified electrode surface for boosting the electrocatalysis towards the hydrogen evolution reaction and ethanol oxidation reaction, Chem. Commun., 2021, vol. 57, no. 100, p. 13792. https://doi.org/10.1039/D1CC04163K

    Article  Google Scholar 

  23. Aguilera González, E.N., Estrada Flores, S. and Martínez Luévanos, A., in Nanomaterials: Recent Advances for Hydrogen Production, Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, Kharissova, O.V., Martínez, L.M.T., and Kharisov, B.I., Eds., Cham: Springer, 2021, p. 1. https://doi.org/10.1007/978-3-030-11155-7_33-1

    Book  Google Scholar 

  24. Wibowo, D., Malik, R.H.A., Mustapa, F., Nakai, T., et al., Highly synergistic sensor of graphene electrode functionalized with rutile TiO2 microstructures to detect L-tryptophan compound, J. Oleo Sci., 2022, vol. 71, p. 759. https://doi.org/10.5650/jos.ess21416

    Article  Google Scholar 

  25. Yue, X., Li, Z. and Zhao, S. A new electrochemical sensor for simultaneous detection of sulfamethoxazole and trimethoprim antibiotics based on graphene and ZnO nanorods modified glassy carbon electrode, Microchem, J., 2020, vol. 159, p. 105440. https://doi.org/10.1016/j.microc.2020.105440

    Article  Google Scholar 

  26. Beitollahi, H. and Garkani Nejad, F., Graphene oxide/ZnO nano composite for sensitive and selective electrochemical sensing of levodopa and tyrosine using modified graphite screen printed electrode, Electroanalysis, 2016, vol. 28, no. 9, p. 2237. https://doi.org/10.1002/elan.201600143

    Article  Google Scholar 

  27. Kalambate, P.K., Rawool, C.R., and Srivastava, A.K., Voltammetric determination of pyrazinamide at graphene-zinc oxide nanocomposite modified carbon paste electrode employing differential pulse voltammetry, Sens. Actuat. B Chem., 2016, vol. 237, p. 196. https://doi.org/10.1016/j.snb.2016.06.019

    Article  Google Scholar 

  28. Salih, E., Mekawy, M., Hassan, R.Y.A., and El-Sherbiny, I.M., Synthesis, characterization and electrochemical-sensor applications of zinc oxide/graphene oxide nanocomposite, J. Nanostruct. Chem., 2016, vol. 6, p. 137. https://doi.org/10.1007/s40097-016-0188-z

    Article  Google Scholar 

  29. Nurdin, M., Arham, Z., Irna, W.O., Maulidiyah, M., et al., Enhanced-charge transfer over molecularly imprinted polyaniline modified graphene/TiO2 nanocomposite electrode for highly selective detection of fipronil insecticide, Mater. Sci. Semicond. Process., 2022, vol. 151, p. 106994. https://doi.org/10.1016/j.mssp.2022.106994

    Article  Google Scholar 

  30. Mahato, N., Sreekanth, T.V.M., Yoo, K., and Kim, J., Semi-polycrystalline polyaniline-activated carbon composite for supercapacitor application, Molecules, 2023, vol. 28, no. 4, p. 1520. https://doi.org/10.3390/molecules28041520

    Article  Google Scholar 

  31. Bagheri, B., Zarrintaj, P., Samadi, A., Zarrintaj, R., et al., Tissue engineering with electrospun electro-responsive chitosan-aniline oligomer/polyvinyl alcohol, Int. J. Biol. Macromol., 2020, vol. 147, p. 160. https://doi.org/10.1016/j.ijbiomac.2019.12.264

    Article  Google Scholar 

  32. Nurdin, M., Arham, Z., Rasyid, J., Maulidiyah, M., et al., Electrochemical performance of carbon paste electrode modified TiO2/Ag-Li (CPE-TiO2/Ag-Li) in determining fipronil compound, J. Phys. Conf. Ser., 2021, vol. 1763, p. 012067. https://doi.org/10.1088/1742-6596/1763/1/012067

    Article  Google Scholar 

  33. Nurdin, M., Maulidiyah, M., Salim, L.O.A., Muzakkar, M.Z., et al., High performance cypermethrin pesticide detection using anatase TiO2-carbon paste nanocomposites electrode, Microchem. J., 2019, vol. 145, p. 756. https://doi.org/10.1016/j.microc.2018.11.050

    Article  Google Scholar 

  34. Nurdin, M., Agusu, L., Putra, A.A.M., Maulidiyah, M., et al., Synthesis and electrochemical performance of graphene-TiO2-carbon paste nanocomposites electrode in phenol detection, J. Phys. Chem. Solids, 2019, vol. 131, p. 104. https://doi.org/10.1016/j.jpcs.2019.03.014

    Article  Google Scholar 

  35. Javaid, S., Lee, J., Sofianos, M.V., Douglas-Moore, Z., et al., Zinc oxide nanoparticles as antifouling materials for the electrochemical detection of methylparaben, ChemElectroChem, 2021, vol. 8, p. 187. https://doi.org/10.1002/celc.202001487

    Article  Google Scholar 

Download references

Funding

This research was supported in full or in part by the Kurita Asia Research Grant (22Pid015-A6) provided by the Kurita Water and Environment Foundation, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to La Ode Agus Salim.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La Ode Agus Salim, Yunita, K.S., Irwan, I. et al. Graphene Modified ZnO/Polyaniline Electrode Material for Electrochemical Sensing of Phenol Compounds. Surf. Engin. Appl.Electrochem. 59, 764–771 (2023). https://doi.org/10.3103/S1068375523060133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375523060133

Keywords:

Navigation