Skip to main content
Log in

Investigation of nickel slag waste as a modifier on graphene-TiO2 microstructure for sensing phenolic compound

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, the potential of nickel slag waste (NSW) was performed as a modifier of graphene-TiO2 material for sensing phenolic compound under an electrochemical system. It was provided to produce variations of mineral components to improve electrochemical sensing in its application for a sensor device. Preparation of composite material (slag-graphene-TiO2) was prepared through solid-state reaction by mixing of NSW, graphene, and TiO2 anatase crystal. Based on these results, we discover the composition of NSW with various mineral contents and produced anatase TiO2 crystal prepared via thermal method at 500 °C for 3 h. Subsequently, the slag-G-TiO2 composite has been homogeneous and characterized using SEM–EDX shows the microstructure formed with the variation of elements content. Moreover, the electrochemical test for sensing phenol compound exhibits the exceptionally sensitivity towards phenol detection in electrolyte solution by the limit of detection (LoD) is 0.0367 ppm and % RSD value of 0.016%. The electrode also produce excellent stability properties by repeatability of 1 to 21 times and the average of oxidation current at 183.57 µA. Finally, we test with a real sample to obtain the ability of phenol detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Maulidiyah, T. Azis, L. Lindayani, D. Wibowo, L. Ode, A. Salim, A. Aladin, M. Nurdin, J. Electrochem. Sci. Technol. 10, 1 (2019)

    Google Scholar 

  2. Z. Zhu, S. Ouyang, P. Li, L. Shan, R. Ma, P. Zhang, Appl. Clay Sci. 188, 105500 (2020)

    CAS  Google Scholar 

  3. I. Munoz, A. Rodriguez, R. Rosal, A.R. Fernandez-Alba, Sci. Total Environ. 407, 1245 (2009)

    CAS  Google Scholar 

  4. A. Demayo, M.C. Taylor, K.W. Taylor, P.V. Hodson, P.B. Hammond, Crit. Rev. Environ. Sci. Technol. 12, 257 (1982)

    CAS  Google Scholar 

  5. M. Nurdin, O.A. Prabowo, Z. Arham, D. Wibowo, M. Maulidiyah, S.K.M. Saad, A.A. Umar, Surf. Interfaces 16, 108 (2019)

    CAS  Google Scholar 

  6. M. Nurdin, N. Dali, I. Irwan, M. Maulidiyah, Z. Arham, R. Ruslan, B. Hamzah, S. Sarjuna, D. Wibowo, Anal. Bioanal. Electrochem. 10, 1538 (2018)

    CAS  Google Scholar 

  7. R.F. Al-Thani, D.A.M. Abd-El-Haleem, M. Al-Shammri, Afr. J. Biotechnol. 6, 2675 (2007)

    CAS  Google Scholar 

  8. M. Mohibbul, D. Bahnemann, M. Muneer, Org. Pollut. Ten Years After Stock Conv. 3, 293 (2012)

    Google Scholar 

  9. M. Maulidiyah, M. Nurdin, F. Fatma, M. Natsir, D. Wibowo, Anal. Chem. Res. 12, 1 (2017)

    CAS  Google Scholar 

  10. T. Azis, A.T. Nurwahidah, D. Wibowo, M. Nurdin, Environ. Nanotechnol. Monit. Manag. 8, 103 (2017)

    Google Scholar 

  11. M.M. Nurhidayani, W.D. Maulidiyah, M. Nurdin, IOP Conf. Ser. Mater. Sci. Eng. 267, 12035 (2017)

    Google Scholar 

  12. J. Michałowicz, W. Duda, Pol. J. Environ. Stud. 16, 347 (2007)

    Google Scholar 

  13. S. Chakraborty, T. Bhattacharya, T.N. Patel, K.K. Tiwari, J. Environ. Biol. 31, 293 (2010)

    CAS  Google Scholar 

  14. H. Aoyama, H. Hojo, K.L. Takahashi, N. Shimizu-Endo, M. Araki, Y. Takeuchi-Kashimoto, M. Saka, S. Teramoto, Congenit. Anom. (Kyoto) 52, 28 (2012)

    CAS  Google Scholar 

  15. R. Mateos, J.L. Espartero, M. Trujillo, J.J. Rios, M. León-Camacho, F. Alcudia, A. Cert, J. Agric. Food Chem. 49, 2185 (2001)

    CAS  Google Scholar 

  16. M. Maulidiyah, M. Natsir, F. Fitrianingsih, Z. Arham, D. Wibowo, M. Nurdin, Orient. J. Chem. 33, 3101 (2017)

    CAS  Google Scholar 

  17. C.D. Stalikas, J. Sep. Sci. 30, 3268 (2007)

    CAS  Google Scholar 

  18. M. Nurdin, L. Agusu, A.A.M. Putra, M. Maulidiyah, Z. Arham, D. Wibowo, M.Z. Muzakkar, A.A. Umar, J. Phys. Chem. Solids 131, 104 (2019)

    CAS  Google Scholar 

  19. S. Pérez-Magariño, I. Revilla, M.L. González-SanJosé, S. Beltrán, J. Chromatogr. A 847, 75 (1999)

    Google Scholar 

  20. Y. Zhang, M. Zhang, Q. Wei, Y. Gao, L. Guo, K.A. Al-Ghanim, S. Mahboob, X. Zhang, Sensors 16, 535 (2016)

    CAS  Google Scholar 

  21. D. Wibowo, M. Ruslan, T. Azis, M. Nurdin, Anal. Bioanal. Electrochem. 10, 465 (2018)

    CAS  Google Scholar 

  22. M. Maulidiyah, D.S. Tribawono, D. Wibowo, M. Nurdin, Anal. Bioanal. Electrochem. 10, 450 (2018)

    Google Scholar 

  23. M.Z. Muzakkar, A.A. Umar, I. Ilham, Z. Saputra, L. Zulfikar, J. Phys. Conf. Ser. 1242, 1 (2019)

    Google Scholar 

  24. M. Nurdin, A. Zaeni, E.T. Rammang, M. Maulidiyah, D. Wibowo, Anal. Bioanal. Electrochem. 9, 480 (2017)

    CAS  Google Scholar 

  25. D. Wibowo, M. Nurdin, IOP Conf. Ser. Mater. Sci. Eng. 267, 012007 (2017)

    Google Scholar 

  26. A.H. Hikmawati, D. Wibowo, M. Nurdin, IOP Conf. Ser. Mater. Sci. Eng. 267, 012005 (2017)

    Google Scholar 

  27. L.O. Mursalim, A.M. Ruslan, R.A. Safitri, T. Azis, D. Wibowo, M. Nurdin, IOP Conf. Ser. Mater. Sci. Eng. 267, 012006 (2017)

    Google Scholar 

  28. M. Maulidiyah, I.B.P. Wijawan, D. Wibowo, A. Aladin, B. Hamzah, M. Nurdin, IOP Conf. Ser. Mater. Sci. Eng. 367, 012060 (2018)

    Google Scholar 

  29. M. Nurdin, M. Maulidiyah, L.O.A. Salim, M.Z. Muzakkar, A.A. Umar, Microchem. J. 145, 756 (2019)

    CAS  Google Scholar 

  30. M. Tavakkoli, N. Holmberg, R. Kronberg, H. Jiang, J. Sainio, E.I. Kauppinen, T. Kallio, K. Laasonen, ACS Catal. 7, 3121 (2017)

    CAS  Google Scholar 

  31. M.Z. Muzakkar, M. Nurdin, I. Ismail, M. Maulidiyah, D. Wibowo, R. Ratna, S.K.M. Saad, A.A. Umar, Emiss. Control Sci. Technol. 6, 28 (2019)

    Google Scholar 

  32. V.K. Gupta, Ind. Eng. Chem. Res. 37, 192 (1998)

    CAS  Google Scholar 

  33. M. Nurdin, L.O.A.N. Ramadhan, D. Darmawati, M. Maulidiyah, D. Wibowo, J. Coat. Technol. Res. 15, 395 (2017)

    Google Scholar 

  34. H. Kim, W.H. Kim, I. Sohn, D.J. Min, Steel Res. Int. 81, 261 (2010)

    CAS  Google Scholar 

  35. M. Nurdin, N.A. Yanti, A.H. Watoni, M. Maulidiyah, A. Aladin, D. Wibowo, Asian J. Chem. 30, 1590 (2018)

    Google Scholar 

  36. S.M. Oliveira, J.M. Luzardo, L.A. Silva, D.C. Aguiar, C.A. Senna, R. Verdan, A. Kuznetsov, T.L. Vasconcelos, B.S. Archanjo, C.A. Achete, Thin Solid Films 699, 137875 (2020)

    CAS  Google Scholar 

  37. M. Khodari, E.M. Rabie, H.F. Assaf, Int. J. Sci. Res. 5, 1501 (2015)

    Google Scholar 

  38. H. Lin, X. Ji, Q. Chen, Y. Zhou, C.E. Banks, K. Wu, Electrochem. Commun. 11, 1990 (2009)

    CAS  Google Scholar 

  39. X. Zhu, R. Zhu, L. Pei, H. Liu, L. Xu, J. Wang, W. Feng, Y. Jiao, W. Zhang, J. Mater. Sci. Mater. Electron. 30, 21210 (2019)

    CAS  Google Scholar 

  40. Ilham, D. M. Hartono, E. Suganda, and M. Nurdin, Orient. J. Chem. 33, 2599 (2017)

    CAS  Google Scholar 

  41. J. Wang, J. Yu, X. Zhu, X.Z. Kong, Nanoscale Res. Lett. 7, 1 (2012)

    Google Scholar 

  42. L. Cheng, D. Zhang, Y. Liao, F. Li, H. Zhang, Q. Xiang, J. Colloid Interface Sci. 555, 94 (2019)

    CAS  Google Scholar 

  43. H. Wang, D. Wu, X. Li, P. Huo, J. Mater. Sci. Mater. Electron. 30, 19126 (2019)

    CAS  Google Scholar 

  44. Q. Xiang, X. Ma, D. Zhang, H. Zhou, Y. Liao, H. Zhang, S. Xu, I. Levchenko, K. Bazaka, J. Colloid Interface Sci. 556, 376 (2019)

    CAS  Google Scholar 

  45. M. Maulidiyah, D. Wibowo, H. Herlin, M.L. Andarini, R. Ruslan, M. Nurdin, Asian J. Chem. 29, 2504 (2017)

    CAS  Google Scholar 

  46. M. Nurdin, T. Azis, M. Maulidiyah, A. Aladin, N.A. Hafid, L.O.A. Salim, D. Wibowo, IOP Conf. Ser. Mater. Sci. Eng. 367, 012048 (2018)

    Google Scholar 

  47. L. Agusu, L. O. Ahmad, M. Nurdin, S. Mitsudo, and H. Kikuchi, in IOP Conf. Ser. Mater. Sci. Eng. (IOP Publishing, 2018), p. 12002.

  48. M.M. Momeni, Y. Ghayeb, J. Electroanal. Chem. 751, 43 (2015)

    CAS  Google Scholar 

  49. A.J. Bard, L.R. Faulkner, J. Leddy, C.G. Zoski, Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 1980)

    Google Scholar 

  50. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett. 8, 3498 (2008)

    CAS  Google Scholar 

  51. N.R. de Tacconi, J. Carmona, K. Rajeshwar, J. Phys. Chem. B 101, 10151 (1997)

    Google Scholar 

  52. T. Sawatsuk, A. Chindaduang, C. Sae-Kung, S. Pratontep, G. Tumcharern, Diam. Relat. Mater. 18, 524 (2009)

    CAS  Google Scholar 

  53. J.I. Goldstein, D.E. Newbury, J.R. Michael, N.W.M. Ritchie, J.H.J. Scott, D.C. Joy, Scanning Electron Microscopy and X-Ray Microanalysis (Springer, New York, 2017)

    Google Scholar 

  54. H.C. Kolb, M.G. Finn, K.B. Sharpless, Angew. Chem. Int. Ed. 40, 2004 (2001)

    CAS  Google Scholar 

  55. D.R. Thévenot, K. Toth, R.A. Durst, G.S. Wilson, Anal. Lett. 34, 635 (2001)

    Google Scholar 

  56. D. Muliastri, A. B. Widyartha, R. Saputra, M. Nurdin, and L. Ramadhan, in J. Phys. Conf. Ser. (IOP Publishing, 2018), p. 12009.

  57. M. Maulidiyah, F. T. Mardhan, M. Natsir, D. Wibowo, and M. Nurdin, in J. Phys. Conf. Ser. (IOP Publishing, 2019), p. 12017.

  58. M. Wang, Y. Liu, L. Yang, K. Tian, L. He, Z. Zhang, Q. Jia, Y. Song, S. Fang, Sens. Actuators B Chem. 281, 1063 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to financial support from the Ministry of Research and Technology/ National Agency for Research and Innovation of Indonesia under research Grant No. 171/SP2H/AMD/LT/DRPM/2020 and 4289/LL9/PG/2020. We also acknowledge to titanium research group for implementation of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dwiprayogo Wibowo.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wibowo, D., Sufandy, Y., Irwan, I. et al. Investigation of nickel slag waste as a modifier on graphene-TiO2 microstructure for sensing phenolic compound. J Mater Sci: Mater Electron 31, 14375–14383 (2020). https://doi.org/10.1007/s10854-020-03996-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03996-2

Navigation