Skip to main content
Log in

Formation of Intermetallic Compounds in Al–Cu Interface via Cold Roll Bonding: Review

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The composites consisting of similar or dissimilar metallic layers with different physical properties are vastly applicable. Among various methods for producing these composites, cold roll bonding (CRB) is considered to be more efficient and more cost-effective than other bonding processes. Nowadays, Al-Cu layer composite bonds are favorable in different industries due to their low price, well conductibility, high corrosion resistance, high deformation, and good electrical conduction. This review paper deals with the investigations of the Al-Cu cold rolling process, of the bonding mechanism of metallic layers during CRB, and of the effect of the roll bond strength parameters such as initial thickness, for one. Roll bonding has three levels: (1) physical touch; (2) activating surfaces in touch; (3) interaction between bonding metals. CRB is supposed to be an in-plane strain, and the normal stress distributed on the top and bottom rollers is homogeneous. Annealing before and after rolling, the direction and speed of rolling, the amount of thickness reduction, and the lubrication conditions on the Al–Cu bond through the roll bonding process were studied. The effect of different annealing conditions on the produced intermetallic compounds at the Al–Cu rolling bond interface and the growth of the intermetallic phases and their impact on the CRB parameters was examined. The thickness of intermetallic compounds, thickness reduction under the rolling process, the rolling speed, the annealing temperature, and time affected the bond strength. The effect of the rolling speed on the bond strength depends on the touching time between the sheets during rolling, which means that the touching time between two surfaces of Al and Cu sheets reduces at higher rolling speeds. As a result, the chance for proper bonding is lost, and, therefore, the bond strength is decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Uscinowicz, R., The effect of rolling direction on the creep process of Al–Cu bimetallic sheet, Mater. Des., 2013, vol. 49, p. 693. https://doi.org/10.1016/j.matdes.2013.02.012

    Article  Google Scholar 

  2. Shiran, M.R.K.G., Bakhtiari, H., Mousavi, S.A.A., Khalaj, G., et al., Effect of stand-off distance on the mechanical and metallurgical properties of explosively bonded 321 austenitic stainless steel-1230 aluminum alloy tubes, Mater. Res., 2017, vol. 20, p. 291. https://doi.org/10.1590/1980-5373-mr-2016-0516

    Article  Google Scholar 

  3. Sheng, L.Y., Yang, F., Xi, T.F., Lai, C., et al., Influence of heat treatment on the interface of Cu/Al bimetal composite fabricated by cold rolling, Composites, Part B, 2011, vol. 42, p. 1468–1473. https://doi.org/10.1016/j.compositesb.2011.04.045

    Article  Google Scholar 

  4. Jamaati, R. and Toroghinejad, M.R., Cold roll bonding bond strengths: Review, Mater. Sci. Technol., 2011, vol. 27, p. 1101. https://doi.org/10.1179/026708310X12815992418256

    Article  Google Scholar 

  5. Roostaei, M. and Darabi, R., Investigation on formability of three-layer joined Al/Cu/Al sheets annealed at different temperature, Mater. Sci. Technol., 2020, vol. 36, no. 13, p. 1476. https://doi.org/10.1080/02670836.2020.1792637

    Article  Google Scholar 

  6. Bagheri, A., Toroghinejad, M.R., and Taherizadeh, A., Investigation of formability of three-layered brass-IF steel-brass composite, J. Weld. Sci. Technol., Iran, 2018, vol. 3, p. 68.

  7. Danesh Manesh, H. and Shahabi, H.Sh., Effective parameters on bonding strength of roll bonded Al/St/Al multilayer strips, J. Alloys Compd., 2009, vol. 476, nos. 1–2, p. 292. https://doi.org/10.1016/j.jallcom.2008.08.081

    Article  Google Scholar 

  8. Jamaati, R. and Toroghinejad, M.R., Investigation of the parameters of the cold roll bonding (CRB) process, Mater. Sci. Eng., A, 2010, vol. 527, p. 2320. https://doi.org/10.1016/j.msea.2009.11.069

    Article  Google Scholar 

  9. Acoff, V.L., Wilkerson, S., and Arenas, M., The effect of rolling direction on the weld structure and hardness of gamma-TiAl sheet material, Mater. Sci. Eng., A, 2002, vol. 329, p. 763. https://doi.org/10.1016/S0921-5093(01)01657-4

    Article  Google Scholar 

  10. Tsuji, N., To, Y.I., Saito, Y., and Minamino, Y., Strength and ductility of ultrafine-grained aluminum and iron produced by ARB and annealing, Scr. Mater., 2002, vol. 47, p. 893. https://doi.org/10.1016/S1359-6462(02)00282-8

    Article  Google Scholar 

  11. Tsuji, N., Saito, Y., Utsunomiya, H., and Tanigawa, S., Ultra-fine grained bulk steel produced by accumulative roll-bonding (arb) process, Scr. Mater., 1999, vol. 40, no. 7, p. 795. https://doi.org/10.1016/S1359-6462(99)00015-9

    Article  Google Scholar 

  12. Hwang, Y.-M. and Tzou, G.-Y., An analytical approach to asymmetrical hot-sheet rolling considering the effects of the shear stress and internal moment at the roll gap, J. Mater. Process. Technol., 1995, vol. 52, p. 399. https://doi.org/10.1016/0924-0136(94)01731-F

    Article  Google Scholar 

  13. Pan, S.C., Huang, M.N., Tzou, G.Y., and Syu, S.W., Analysis of asymmetrical cold and hot bond rolling of the unbounded clad sheet under constant shear friction, J. Mater. Process. Technol., 2006, vol. 177, p. 114. https://doi.org/10.1016/j.jmatprotec.2006.04.071

    Article  Google Scholar 

  14. McQueen, H.J., Pressure welding, solid state: role of hot deformation, Can. Metall. Q., 2012, vol. 51, p. 239. https://doi.org/10.1179/1879139512y.0000000011

    Article  Google Scholar 

  15. Woznika, H., The results of the so far performed investigations of Al–Cu butt cold pressure welding by the method of upsetting, Arch. Civil. Mech. Eng., 2009, vol. 9, p. 135. https://doi.org/10.1016/s1644-9665(12)60046-6

    Article  Google Scholar 

  16. Sim, K.S. and Lee, Y.S., A bonding map for cu and al plates by pressure welding at cold and warm temperatures, Mater. Sci. Forum, 2005, vol. 475, p. 2667. https://doi.org/10.4028/www.scientific.net/MSF.475-479.2667

    Article  Google Scholar 

  17. Abbasi, M., Salehi, M.T., and Karimi Taheri, A., An investigation on cold roll welding of copper to aluminum using electrical resistivity, Z. Metallknd., 2001, vol. 92, no. 5, p. 423.

    Google Scholar 

  18. Khanzadeh, M.R., Khalaj, G.R., Pouraliakbar, H., Jandaghi, M.R., et al., Multilayer Cu/Al/Cu explosive welded joints: characterizing heat treatment effect on the interface microstructure and mechanical properties, J. Manuf. Process., 2018, vol. 35, p. 657. https://doi.org/10.1016/j.jmapro.2018.09.014

    Article  Google Scholar 

  19. Li, Y.T. and Yu, D.M., Interfacial energy and match of cold pressure welded Ag/Ni and Al/Cu, Trans. Nonferrous Met. Soc. China, 2002, vol. 12, no. 5, p. 814.

    Google Scholar 

  20. Vamsi Krishn, B., Venugopal, P., and Prasad Rao, K., Optimization of process parameters in cold solid state joining of sintered steel and copper P/M preforms, Trans. Indian Inst. Met., 2003, vol. 56, no. 4, p. 363.

    Google Scholar 

  21. Sahin, M. and Erol Akata, H., Joining with friction welding of plastically deformed steel, J. Mater. Process. Technol., 2003, vol. 142, p. 239. https://doi.org/10.1016/S0924-0136(03)00589-2

    Article  Google Scholar 

  22. Sahin, M. and Ozel, K., Mechanical and metallurgical properties of aluminum and copper sheets joined bycold pressure welding, J. Mech. Eng., 2008, vol. 54, no. 11, p. 796.

    Google Scholar 

  23. Korzhyk, V., Khaskin, V., Voitenko, O., Sydorets, V., et al., Welding technology in additive manufacturing processes of 3D objects, Mater. Sci. Forum, 2017, vol. 906, p. 121. https://doi.org/10.4028

    Article  Google Scholar 

  24. Iordachescu, M., Iordachescu, D., Scutelnicu, E., and Ocaña, J.L., FEM model of butt cold welding, Sci. Technol. Weld. Joining, 2007, vol. 12, no. 5, p. 402. https://doi.org/10.1179/174329313X13789830157140

    Article  Google Scholar 

  25. Wei, Y., Li, H., Sun, F., and Zou, J., The interfacial characterization and performance ofcu/al-conductive heads processed by explosion welding, cold pressure welding, and solid-liquid casting, Metals, 2019, vol. 9, p. 237. https://doi.org/10.3390/met9020237

    Article  Google Scholar 

  26. Xia, Q., Wang, J., Yao, K., Hou, D., et al., Interface bonding properties of multi-layered metal composites using material composition method, Tribol. Int., 2019, vol. 131, p. 251. https://doi.org/10.1016/j.triboint.2018.10.024

    Article  Google Scholar 

  27. Okumura, Y., Saji, S., and Anada, H., Titanium-flake reinforced aluminum-matrix composite prepared from multilayer foils by cold pressure welding, Adv. Eng. Mater., 2000, vol. 2, no. 12, p. 818. https://doi.org/10.1002/352760622X.ch52

    Article  Google Scholar 

  28. Kim, C. and Forrest, S., Fabrication of organic light-emitting devices by low-pressure cold welding, Adv. Mater., 2003, vol. 15, no. 6, p. 541. https://doi.org/10.1002/adma.200390127

    Article  Google Scholar 

  29. Kim, C., Burrows, P.E., and Forrest, S.R., Micropatterning of organic electronic devices by cold-welding, Science, 2000, vol. 288, p. 831. https://doi.org/10.1126/science.288.5467.831

    Article  Google Scholar 

  30. Danesh Manesh, H., Assessment of surface bonding strength in Al clad steel strip using electrical resistivity and peeling tests, Mater. Sci. Technol., 2006, vol. 22, no. 6, p. 634. https://doi.org/10.1179/174328406X83914

    Article  Google Scholar 

  31. Lee, K.S., Lee, S.E., and Kwon, Y.N., Interface characterization of Al/Cu 2-ply composites under various loading conditions, Trans. Nonferrous Met. Soc. China, 2014, vol. 24, p. 36. https://doi.org/10.1016/S1003-6326(14)63285-4

    Article  Google Scholar 

  32. Kim, I.K. and Hong, S.I., Effect of heat treatment on the bending behavior of tri-layered Cu/Al/Cu composite plates, Mater. Des., 2013, vol. 47, p. 590. https://doi.org/10.1016/j.matdes.2012.12.070

    Article  Google Scholar 

  33. Li, X., Zu, G., and Wang, P., Effect of strain rate on the tensile performance of Al/Cu/Al laminated composites produced by asymmetrical roll bonding, Mater. Sci. Eng., A, 2013, vol. 575, p. 61. https://doi.org/10.1016/j.msea.2013.03.056

    Article  Google Scholar 

  34. Chen, C.Y., Chen, H.L., and Hwang, W.S., Influence of interfacial structure development on the fracture mechanism and bond strength of aluminum/copper bimetal plate, Mater. Trans., 2006, vol. 47, no. 4, p. 1232. https://doi.org/10.2320/matertrans.47.1232

    Article  Google Scholar 

  35. Kim, I.K. and Hong, S.I., Mechanochemical joining in cold roll-cladding of tri-layered Cu/Al/Cu composite and the interface cracking behavior, Mater. Des., 2014, vol. 57, p. 625. https://doi.org/10.1016/j.matdes.2014.01.054

    Article  Google Scholar 

  36. Peng, X.K., Wuhrer, R., Heness, G., and Yeung, W.Y., Rolling strain effect on the interlaminar properties of roll bonded copper/aluminum metal laminates, J. Mater. Sci., 2000, vol. 35, p. 4357. https://doi.org/10.1023/A:1004852806390

    Article  Google Scholar 

  37. Li, X., Zu, G., Ding, M., Mu, Y., et al., Interfacial microstructure and mechanical properties of Cu/Al clad sheet fabricated by asymmetrical roll bonding and annealing, Mater. Sci. Eng., A, 2011, vol. 529, p. 485. https://doi.org/10.1016/j.msea.2011.09.087

    Article  Google Scholar 

  38. Yousefi Mehr, V., Toroghinejad, M.R., and Rezaeian, A., The effects of the oxide film and annealing treatment on the bond strength of Al–Cu strips in cold roll bonding process, Mater. Des., 2014, vol. 53, p. 174. https://doi.org/10.1016/j.matdes.2013.06.028

    Article  Google Scholar 

  39. Guo, Y., Liu, G., Jin, H., Shi, Z., et al., Intermetallic phase formation in diffusion-bonded Cu/Al laminates, J. Mater. Sci., 2011, vol. 46, no. 8, p. 2467. https://doi.org/10.1007/s10853-010-5093-0

    Article  Google Scholar 

  40. Pfeifer, S., Großmann, S., Freudenberger, R., Willing, H., et al., Characterization of intermetallic compounds in Al–Cu-bimetallic interfaces, Proc. 2012 IEEE 58th Holm Conf. on Electrical Contacts (Holm), Red Hook, NY: Curran Assoc., 2012, pp. 1–6. https://doi.org/10.1109/HOLM.2012.6336554

  41. Kouters, M.H.M., Gubbels, G.H.M., and Dos Santos Ferreira, O., Characterization of intermetallic compounds in Cu–Al ball bonds: Mechanical properties, interface delamination and thermal conductivity, Microelectron. Reliab., 2013, vol. 53, p. 1068. https://doi.org/10.1016/j.microrel.2013.02.020

    Article  Google Scholar 

  42. Cheng, H., Lu, Y.J., and Chen, M., Interdiffusion in liquid Al–Cu and Ni–Cu alloys, J. Chem. Phys., 2009, vol. 131, p. 44. https://doi.org/10.1063/1.3184614

    Article  Google Scholar 

  43. Hannech, E.B., Lamoudi, N., Benslim, N., and Makhloufi, B., Intermetallic formation in the aluminum/copper system, Surf. Rev. Lett., 2003, vol. 10, no. 4, p. 677. https://doi.org/10.1142/S0218625X03005396

    Article  Google Scholar 

  44. Abbasi, M., Karimi Taheri, A., and Salehi, M.T., Growth rate of intermetallic compounds in Al/Cu bimetal produced by cold roll welding process, J. Alloy Compd., 2001, vol. 319, nos. 1–2, p. 233. https://doi.org/10.1016/S0925-8388(01)00872-6

    Article  Google Scholar 

  45. Lee, W.B., Bang, K.S., and Jung, S.B., Effects of the intermetallic compound on the electrical and mechanical properties of friction welded Cu/Al bimetallic joints during annealing, J. Alloy Compd., 2005, vol. 390, p. 212. https://doi.org/10.1016/j.jallcom.2004.07.057

    Article  Google Scholar 

  46. Zhang, B., Wang, T., Cong, Y., Zhao, M., et al., Properties of Cu–Al intermetallic compounds in copper wire bonding, Proc. 2010 11th Int. Conf. on Electronic Packaging Technology and High Density Packaging, Red Hook, NY: Curran Assoc., 2010, pp. 213–216. https://doi.org/10.1109/ICEPT.2010.5582439

  47. Heydari, Vini, M., Daneshmand, S., and Forooghi, M., Roll bonding properties of Al/Cu imetallic laminates fabricated by the roll bonding technique, Technologies, 2017, vol. 5, p. 1. https://doi.org/10.3390/technologies5020032

    Article  Google Scholar 

  48. Li, L., Nagai, K., and Yin, F., Progress in cold roll bonding of metals, Sci. Technol. Adv. Mater., 2008, vol. 9, art. ID 023001. https://doi.org/10.1088/1468-6996/9/2/023001

    Article  Google Scholar 

  49. Jamaati, R. and Toroghinejad, M.R., Effect of friction, annealing conditions and hardness on the bond strength of Al/Al strips produced by cold roll bonding process, Mater. Des., 2010, vol. 31, no. 9, p. 4508. https://doi.org/10.1016/j.matdes.2010.04.022

    Article  Google Scholar 

  50. Ghalehbandi, S.M., Malaki, M., and Gupta, M., Accumulative roll bonding—a review, Appl. Sci., 2019, vol. 9, p. 3627. https://doi.org/10.3390/app9173627

    Article  Google Scholar 

  51. Movahedi, M., Kokabi, A.H., and Madaah Hosseini, H.R., An investigation on the soldering of Al 3003/Zn sheets, Mater. Charact., 2009, vol. 60, p. 441. https://doi.org/10.1016/j.matchar.2008.11.010

    Article  Google Scholar 

  52. Alizadeh, M. and Paydar, M.H., Study on the effect of the presence of TiH2 particles on the roll bonding behavior of aluminum alloy strips, Mater. Des., 2009, vol. 30, p. 82. https://doi.org/10.1016/j.matdes.2008.04.058

    Article  Google Scholar 

  53. Jamaati, R. and Toroghinejad, M.R., Microstructure and mechanical properties of Al/Al2O3MMC produced by anodizing and cold roll bonding, Mater. Sci. Technol., 2011, vol. 27, no. 11, p. 1648. https://doi.org/10.1179/1743284710Y.0000000011

    Article  Google Scholar 

  54. Luo, J.G. and Acoff, V.L., Using cold roll bonding and annealing to process Ti/Al multi-layered composites from elemental foils, Mater. Sci. Eng., A, 2004, vol. 379, p. 164. https://doi.org/10.1016/j.msea.2004.01.021

    Article  Google Scholar 

  55. Madaah Hosseini, H.R. and Kokabi, A.H., Cold roll bonding of 5754-aluminum strips, Mater. Sci. Eng., A, 2002, vol. 335, p. 186. https://doi.org/10.1016/S0921-5093(01)01925-6

    Article  Google Scholar 

  56. Danesh Manesh, H. and Karimi Taheri, A., An investigation of deformation behavior and bonding strength of bimetal strip during rolling, Mech. Mater., 2005, vol. 37, p. 531. https://doi.org/10.1016/j.mechmat.2004.04.004

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the staff of Rahyaft Advanced Sciences and Technologies, (http://www.a-sciences.com/en/), especially K. Asgari, for their technical support.

Funding

The present research was financially supported by the Rahyaft Advanced Sciences and Technologies, (http://www.a-sciences.com/en/).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Shajari or Z. S. Seyedraoufi.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shajari, Y., Akbari, A., Seyedraoufi, Z.S. et al. Formation of Intermetallic Compounds in Al–Cu Interface via Cold Roll Bonding: Review. Surf. Engin. Appl.Electrochem. 58, 41–50 (2022). https://doi.org/10.3103/S1068375522010112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375522010112

Keywords:

Navigation