Skip to main content
Log in

Influence of Media pH on Corrosion Behaviour of AZ31 Magnesium Alloy in Chloride and Sulphate Media

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

AZ31 alloy has excellent properties like ultra-low density, good energy absorption, and high damping performance but has poor corrosion resistance. The influence of media pH on the corrosion of AZ31 alloy in chloride and sulphate media was investigated using such electrochemical techniques as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The tests were carried out by varying pH in different concentrations (0.05–0.25M) of the media. The surface morphologies and surface compositions of the corroded alloy surfaces were analyzed using scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. Conclusively, the recorded results reflect a trend of a higher corrosion rate at higher concentrations of the media; and an increase in the corrosion rate on decreasing the pH of the media. In the studied pH range, the alloy showed a higher corrosion resistance at pH 11 and a lower corrosion resistance at pH 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Fajardo, S., Glover, C.F., Williams, G., and Frankel, G.S., The evolution of anodic hydrogen on high purity magnesium in acidic buffer solution, Corrosion, 2017, vol. 73, p. 482.

    Article  Google Scholar 

  2. Zhang, L.J., Fan, J.J., Zhang, Z., Cao, F.H., Zhang, J.Q., and Cao, C.N., Study on the anodic film formation process of AZ91D magnesium alloy, Electrochim. Acta., 2007, vol. 52, p. 5325.

    Article  Google Scholar 

  3. Ducharme, P.D. and Mauzeroll, J., Surface analytical methods applied to magnesium corrosion, Anal. Chem., 2015, vol. 87, p. 7499.

    Article  Google Scholar 

  4. Ali, Y., Qiu, D., Jiang, B., Pan, F., and Zhang M., Current research progress in grain refinement of cast magnesium alloys: A review article, J. Alloys Compd., 2015, vol. 619, p. 639.

    Article  Google Scholar 

  5. Altun, H. and Sen, S., Studies on the influence of chloride ion concentration and pH on the corrosion and electrochemical behavior of AZ63 magnesium alloy, Mater. Des., 2004, vol. 25, p. 637.

    Article  Google Scholar 

  6. Pardo, A., Merino, M.C., Coy, A.E., Arrabal, R., Viejo, F., and Matykina, E., Corrosion behavior of magnesium/aluminium alloys in 3.5 wt % NaCl, Corros. Sci., 2008, vol. 50, p. 823.

    Article  Google Scholar 

  7. Ben Hamu, G., Eliezer, D., and Wagner, L., The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy, J. Alloys Compd., 2009, vol. 468, p. 222.

    Article  Google Scholar 

  8. Aung, N. and Zhou, W., Effect of grain size and twins on corrosion behavior of AZ31B magnesium alloy, Corros. Sci., 2010, vol. 52, p. 589.

    Article  Google Scholar 

  9. El-Taib Heakal, F., Fekry, A.M., and Fatayerji, M.Z., Influence of halides on the dissolution and passivation behavior of AZ91D magnesium alloy in aqueous solutions, Electrochim. Acta, 2009, vol. 54, p. 1545.

    Article  Google Scholar 

  10. Wang, L., Shinohara, T., and Zhang, B.P., Influence of chloride, sulfate and bicarbonate anions on the corrosion behavior of AZ31 magnesium alloy, J. Alloys Compd., 2010, vol. 496, p. 500.

    Article  Google Scholar 

  11. Wu, G., Fan, Y., Atrens, A., Zhai, C., and Ding, W., Electrochemical behavior of magnesium alloys AZ91D, AZCe2, and AZLa1 in chloride and sulfate solutions, J. Appl. Electrochem., 2008, vol. 38, p. 251.

    Article  Google Scholar 

  12. El-Taib Heakal, F., Fekry, A.M., and Abd El-Barr Jibril, M., Electrochemical behavior of the Mg alloy AZ91D in borate solutions, Corros. Sci., 2011, vol. 53, p. 1174.

    Article  Google Scholar 

  13. Loose, W.S., Corrosion and protection of magnesium, in Metals Handbook, Pidgeon, L.M., Mathes, J.C., and Woldmen., N.E. Eds., Materials Park, OH: ASM Int., 1946, p. 173.

  14. Polmear, I.J., Light Alloys: Metallurgy of the Light Metals, London: Edward Arnold, 1989, 2nd ed.

    Google Scholar 

  15. Emley, E.F., Principles of Magnesium Technology, 1st ed., Oxford: Pergamon, 1966, ch. 9.

    Google Scholar 

  16. Pebere, N., Riera, C., and Dabosi, F., Investigation of magnesium corrosion in aerated sodium sulfate solution by electrochemical impedance spectroscopy, Electochim. Acta, 1990, vol. 35, p. 555.

    Article  Google Scholar 

  17. Song, Y., Shan, D., Chen, R., and Han, E., Corrosion characterization of Mg–8Li alloy in NaCl solution, Corros. Sci., 2009, vol. 51, p. 1087.

    Article  Google Scholar 

  18. Chen, J., Dong, J., Wang, J., Han, and E., Ke, W., AC impedance spectroscopy study of the corrosion behavior of an AZ91 magnesium alloy in 0.1 M sodium sulfate solution, Electrochem. Acta, 2007, vol. 52, p. 3299.

    Article  Google Scholar 

  19. Makar, G.L. and Kruger, J., Corrosion studies of rapidly solidified magnesium alloys, J. Electrochem. Soc., 1990, vol. 137, p. 414.

    Article  Google Scholar 

  20. Song, G. and Atrens, A., Corrosion mechanisms of magnesium alloys, Adv. Eng. Mater., 1999, vol. 1, p. 11.

    Article  Google Scholar 

  21. Song, G.L. and Atrens, A., Understanding magnesium corrosion—A framework for improved alloy performance, Adv. Eng. Mater., 2003, vol. 5, p. 837.

    Article  Google Scholar 

  22. Song, G.L., Atrens, A., StJohn, D., Nairn, J., and Li, Y., The electrochemical corrosion of pure magnesium in 1 N NaCl, Corros. Sci., 1997, vol. 39, p. 855.

    Article  Google Scholar 

  23. Zhao, M., Liu, M., Song, G., and Atrens, A., Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41, Corros. Sci., 2008, vol. 50, p. 3168.

    Article  Google Scholar 

  24. Song, G. and Atrens, A., Recent insights into the mechanism of magnesium corrosion and research suggestions, Adv. Eng. Mater., 2007, vol. 9, p. 177.

    Article  Google Scholar 

  25. Atrens, A. and Dietzel, W., The negative difference effect and unipositive Mg+, Adv. Eng. Mater., 2007, vol. 9, p. 292.

    Article  Google Scholar 

  26. Bender, S., Goellner, J., and Atrens, A., Corrosion of AZ91 in 1 N NaCl and the mechanism of magnesium corrosion, Adv. Eng. Mater., 2008, vol. 10, p. 583.

    Article  Google Scholar 

  27. Song, G.L., Atrens, A., StJohn, D., Wu, X., and Nairn, J., The anodic dissolution of magnesium in chloride and sulphate solutions, Corros. Sci., 1997, vol. 39, p. 1981.

    Article  Google Scholar 

  28. Makar G.L. and Kruger, J., Corrosion of magnesium, Int. Mat. Rev., 1993, vol. 38, p. 138.

    Article  Google Scholar 

  29. Cheng, Y., Qin, T., Wang, H., and Zhang, Z., Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium alloys, Trans. Nonferrous Met. Soc. China, 2009, vol. 19, p. 517.

    Article  Google Scholar 

  30. Galvele, J., Transport processes and the mechanism of pitting of metals, J. Electrochem. Soc., 1976, vol. 123, p. 464.

    Article  Google Scholar 

  31. Alvarez, M. and Galvele, J., The mechanism of pitting of high purity iron in NaCl solutions, Corros. Sci., 1984, vol. 24, p. 27.

    Article  Google Scholar 

  32. Sharifi-Asla, S., Mao, F., Lu, P., Kursten, B., and Macdonald, D.D., Exploration of the effect of chloride ion concentration and temperature on pitting corrosion of carbon steel in saturated Ca(OH)2 solution, Corros. Sci. 2015, vol. 98, p. 708.

    Article  Google Scholar 

  33. Acharya, M.G. and Shetty, A.N., The corrosion behavior of AZ31 alloy in chloride and sulfate media—A comparative study through electrochemical investigations, J. Magnesium Alloys, 2019, vol. 7, p. 98.

    Article  Google Scholar 

  34. Fontana, M.G., Corrosion Engineering, Singapore: McGraw Hill, 1987, p. 173.

    Google Scholar 

  35. Pourbaix, M., Atlas of Electrochemical Equilibria Aqueous Solutions, Houston, TX: Natl. Assoc. Corros., 1974, p. 139.

    Google Scholar 

  36. Baghni, M., Wu, Y., Li, J., and Zhang, W., Effects of die angle on microstructures and mechanical properties of AZ31 magnesium alloy processed by equal channel angular pressing, Trans. Nonferrous Met. Soc. China, 2004, vol. 14, p. 53.

    Google Scholar 

  37. Guo, K.W., A Review of magnesium/magnesium alloys corrosion and its protection, Corros. Sci., 2010, vol. 2, p. 13.

    Google Scholar 

  38. Godard, H.P., Jepson, W.P., Bothwell, M.R., and Kane, R.L., The Corrosion of Light Metals, Chichester: Wiley, 1967.

    Google Scholar 

  39. Baril, G., Galicia, G., Deslouis, C., Pebere, N., Tribollet, B., and Vivier, V., An impedance investigation of the mechanism of pure magnesium corrosion in sodium sulfate solutions, J. Elecrochem. Soc., 2007, vol. 154, p. 108.

    Article  Google Scholar 

  40. Song, G., Bowles, A.L., and Stjohn, D.H., Corrosion resistance of aged die cast magnesium alloy AZ91D, Mater. Sci. Eng., A, 2004, vol. 366, p. 74.

    Article  Google Scholar 

  41. Song, R.G., Blawert, C., Dietzel, W., and Atrens, A., A study on stress corrosion cracking and hydrogen embrittlement of AZ31 magnesium alloy, Mater. Sci. Eng., A, 2005, vol. 399, p. 308.

    Article  Google Scholar 

  42. Baril, G. and Pebere, N., The corrosion of pure magnesium in aerated and deaerated sodium sulphate solutions, Corros. Sci., 2001, vol. 43, p. 471.

    Article  Google Scholar 

  43. Song, G. and Stjohn, D., Corrosion behavior of magnesium in ethylene glycol, Corros. Sci., 2004, vol. 46, p. 1381.

    Article  Google Scholar 

  44. Ardelean, H., Frateur, I., and Marcus, P., corrosion protection of magnesium alloys by cerium, zirconium and niobium-based conversion coatings, Corros. Sci., 2008, vol. 50, p. 1907.

    Article  Google Scholar 

  45. Song, G., Control of biodegradation of biocompatable magnesium alloys, Corros. Sci., 2007, vol. 49, p. 1696.

    Article  Google Scholar 

  46. Jüttner, K., Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces, Electrochim. Acta, 1990, vol. 35, p. 1501.

    Article  Google Scholar 

  47. Perrault, G.G., Encyclopedia of Electrochemistry of the Elements. Vol. 8: Ag, Ga, Mg, N, Actinides, Bard, A.J., Ed., New York: Marcel Dekker, 1978.

  48. Gulbrandsen, E., Anodic behavior of Mg in HC\({\text{O}}_{3}^{ - }\)/C\({\text{O}}_{3}^{{2 - }}\) buffer solutions. Quasi-steady measurements, Electrochim. Acta, 1992, vol. 37, p. 1403.

    Article  Google Scholar 

  49. He, X., Yan, Z., Liang, H., and Wei, Y., Study on corrosion and stress corrosion cracking behaviors of AZ31 alloy in sodium sulfate solution, J. Mater. Eng. Perform., 2017, vol. 26, p. 2226.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to the National Institute of Technology Karnataka Surathkal, India, for providing necessary laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nityananda Shetty.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

M. Gururaj Acharya, A. Nityananda Shetty Influence of Media pH on Corrosion Behaviour of AZ31 Magnesium Alloy in Chloride and Sulphate Media. Surf. Engin. Appl.Electrochem. 57, 675–688 (2021). https://doi.org/10.3103/S1068375521060065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375521060065

Keywords:

Navigation