Skip to main content
Log in

Investigations on the Growth Mechanism of Nanostructured ZnO: Shedding Light on the Effect of Al3+ Doping

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Herein the growth mechanism of an un-doped zinc oxide (i-ZnO) and an Al-doped zinc oxide (AZO) was investigated using electrochemical techniques. Zinc and aluminum nitrates precursors were used in an aqueous bath solution, under a fixed potential of about –1.0 V, at 80°C. The variations of the morphological, structural, and optical properties of AZO were investigated in terms of Al3+ concentrations ranging from 0 to 4 atomic percentage in the starting solution. The X-ray diffraction patterns showed the hexagonal wurtzite structure for all samples. The effect of the lateral growth mechanism of AZO instead of the longitudinal growth process of ZnO was confirmed by calculating the texture coefficient and by studying the surface morphology under high magnification via scanning electron microscopy. It was found that the morphology evolved from hexagonal flat nanorods into a mixture of tapered hexagonal nanorods and nanosheets, to larger nanosheets by adding aluminum ions dopants. All films demonstrated a transmittance of about 80% in the visible range and exhibited a slight red shift in the absorption edge with Al3+ doping. The optical band gap of AZO nanosheets was found to be lower than that of i-ZnO nanorods. These findings provide fundamental understanding of the growth mechanism and shape control of a nanostructured zinc oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Choopun, S., Vispute, R.D., Yang, W., Sharma, R.P., et al., Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1 – xO alloy films, Appl. Phys. Lett., 2002, vol. 80, no. 9, p. 1529.

    Article  Google Scholar 

  2. Kumar, M. and Sasikumar, C., Electrodeposition of nanostructured ZnO thin film: A review, Am. J. Mater. Sci. Eng., 2014, vol. 2, no. 2, p. 18.

    Google Scholar 

  3. Alvarado Garcia, J.A., Neale, Z., Arce-Plaza, A., Santiago, A., et al., in Handbook of Nanostructured Materials Fabrication to Applications, London: InTechOpen, 2017, chap. 1, p. 3.

  4. Zheng, J.P. and Jow, T.R., A new charge storage mechanism for electrochemical capacitors, J. Electrochem. Soc., 1995, vol. 142, no. 1, p. 6.

    Article  Google Scholar 

  5. Zheng, J.P., Cygan, P.J., and Jow, T.R., Hydrous ruthenium oxide as the electrode materials for electrochemical supercapacitors, J. Electrochem. Soc., 1995, vol. 142, no. 8, p. 2699.

    Article  Google Scholar 

  6. Yang, Y., Guo, W., Pradel, K.C., Zhu, G., et al., Pyroelectric nanogenerators for harvesting thermoelectric energy, Nano Lett., 2012, vol. 12, no. 6, p. 2833.

    Article  Google Scholar 

  7. Pradhan, D. and Leung, K.T., Controlled growth of two-dimensional and one dimensional ZnO nanostructures on indium tin oxide coated glass by direct electrodeposition, Am. Chem. Soc., 2008, vol. 24, no. 17, p. 9707.

    Google Scholar 

  8. Look, D.C., Recent advances in ZnO materials and devices, Mater. Sci. Eng., B, 2001, vol. 80, nos. 1–3, p. 383.

    Article  Google Scholar 

  9. Wang, W., Ai, T., Li, W., Jing, R., Fei, Y., and Feng, X., Photoelectric and electrochemical performance of Al-doped ZnO thin films hydrothermally grown on PET–GR bilayer flexible substrates, J. Phys. Chem. C, 2017, vol. 121, no. 50, p. 28148.

    Article  Google Scholar 

  10. Zhou, H., Yi, D., Yu, Z., Xiao, L., et al., Preparation of aluminum doped zinc oxide films and the study of their microstructure, electrical and optical properties, Thin Solid Films, 2007, vol. 515, no. 17, p. 6909.

    Article  Google Scholar 

  11. Zhan, Z., Zhang, J., Zheng, Q., Pan, D., et al., Strategy for preparing Al-doped ZnO thin film with high mobility and high stability, Cryst. Growth Des., 2011, vol. 11, no. 1, p. 21.

    Article  Google Scholar 

  12. Chen, J., Chen, J., Chen, D., Zhou, Y., Li, W., Ren, Y. and Hu, L., Electrochemical deposition of Al-doped ZnO transparent conducting nanowire arrays for thin-film solar cell electrodes, Mater. Lett., 2014, vol. 117, p. 162.

    Article  Google Scholar 

  13. Heo, Y.W., Norton, D. P., Tien, L. C., Kwon, Y., et al., ZnO nanowire growth and devices, Mater. Sci. Eng., R, 2004, vol. 47, nos. 1–2, p. 1.

    Article  Google Scholar 

  14. Cao, B. and Cai, W., From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions, J. Phys. Chem. C, 2008, vol. 112, no. 3, p. 680.

    Article  Google Scholar 

  15. Senthil Kumar, E., Singh, S., and Ramachadra Rao, M.S., in Handbook ZnO Nanocrystals and Allied Materials, Springer Ser. Mater. Sci. vol. 180, New York: Springer-Verlag, 2014, chap. 1, pp. 1–38.

  16. Hsu, Y.-K., Lin, Y.-G., and Chen, Y.-C., Polarity-dependent photoelectrochemical activity in ZnO nanostructures for solar water splitting, Electrochem. Commun., 2011, vol. 13, no. 12, p. 1383.

    Article  Google Scholar 

  17. Xie, Y.-L., Yuan, J., Song, P., and Hu, S.-Q., Growth of ZnO nanorods and nanosheets by electrodeposition and their applications in dye-sensitized solar cells, J. Mater. Sci.: Mater. Electron., 2015, vol. 26, no. 6, p. 3868.

    Google Scholar 

  18. Diebold, U., Koplitz, L.V., and Dulub, O., Atomic-scale properties of low-index ZnO surfaces, Appl. Surf. Sci., 2004, vol. 237, nos. 1–4, p. 336.

    Article  Google Scholar 

  19. Xu, L., Guo, Y., Liao, Q., Zhang, J., et al., Morphological control of ZnO nanostructures by electrodeposition, J. Phys. Chem. B, 2005, vol. 109, no. 28, p. 13519.

    Article  Google Scholar 

  20. Wang, J., Chen, R., Xiang, L., and Komarnenic, S., Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review, Ceram. Int., 2018, vol. 44, no. 7, p. 7357.

    Article  Google Scholar 

  21. Baratto, C., Growth and properties of ZnO nanorods by RF sputtering for detection of toxic gases, RSC Adv., 2018, vol. 8, p. 32 038.

    Article  Google Scholar 

  22. Peulon, S. and Lincot, D., Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films, Adv. Mater., 1996, vol. 8, no. 2, p. 166.

    Article  Google Scholar 

  23. Hsieh, C.-T., Yang, S.-Y., Gu, J.-L., and Jiang, Y.R., Influence of growth parameters on texture of ZnO nanorods by using electrochemical deposition at low temperatures, Solid State Ionics, 2012, vols. 209–210, p. 43.

    Article  Google Scholar 

  24. Wander, A., Schedin, F., Steadman, P., Norris, A., et al., Stability of polar oxide surfaces, Phys. Rev. Lett., 2001, vol. 86, no. 17, p. 3811.

    Article  Google Scholar 

  25. Guo, R.O., Nishimura, J., Ueda, M., Higashihata, M., et al., Vertically aligned growth of ZnO nanonails by nanoparticle-assisted pulsed-laser ablation deposition, Appl. Phys. A, 2007, vol. 89, no. 1, p. 141.

    Article  Google Scholar 

  26. Ohashi, N., Takahashi, K., Hishita, S., Sakaguchi, I., et al., Fabrication of ZnO microstructures by anisotropic wet-chemical etching, J. Electrochem. Soc., 2007, vol. 154, no. 2, p. D82.

    Article  Google Scholar 

  27. Tsukazaki, A., Ohtomo, A., Kita, T., Ohno, Y., et al., Quantum Hall effect in polar oxide heterostructures, Science, 2007, vol. 315, no. 5817, p. 1388.

    Article  Google Scholar 

  28. Sakagami, N., Yamashita, M., Sekiguchi, T., Miyashita, S., et al., Variation of electrical properties on growth sectors of ZnO single crystals, J. Cryst. Growth, 2001, vol. 229, nos. 1–4, p. 98.

    Article  Google Scholar 

  29. Liu, W.L., Shamsa, M., Calizo, I., Balandin, A.A., et al., Thermal conduction in nanocrystalline diamond films: Effects of the grain boundary scattering and nitrogen doping, Appl. Phys. Lett., 2006, vol. 89, no. 17, p. 171915.

    Article  Google Scholar 

  30. Ghoshal, T., Kar, S., and Chaudhuri, S., Synthesis and optical properties of nanometer to micrometer wide hexagonal cones and columns of ZnO, J. Cryst. Growth, 2006, vol. 293, no. 2, p. 438.

    Article  Google Scholar 

  31. Fujimura, N., Nishihara, T., Goto, S., Xu, J., et al., Control of preferred orientation for ZnOx films: Control of self-texture, J. Cryst. Growth, 1993, vol. 130, nos. 1–2, p. 269.

    Article  Google Scholar 

  32. Adachi, Y., Ohashi, N., Ohnishi, T., Ohgaki, T., et al., Change in polarity of zinc oxide films grown on sapphire substrates without insertion of any buffer layer, J. Mater. Res., 2008, vol. 23, no. 12, p. 3269.

    Article  Google Scholar 

  33. Käbisch, S., Gluba, M.A., Klimm, C., Krause, S., et al., Polarity driven morphology of zinc oxide nanostructures, Appl. Phys. Lett., 2013, vol. 103, no. 10, p. 103106.

    Article  Google Scholar 

  34. Damonte, L.C., Darriba, G.N., and Rentería, M., Structural and electronic properties of Al-doped ZnO semiconductor nanopowders: Interplay between XRD and PALS experiments and first-principles/DFT modeling, J. Alloy Compd., 2018, vol. 735, p. 2471.

    Article  Google Scholar 

  35. Huang, M.H., Mao, S., Feick, H., Yan, H.Q., et al., Room-temperature ultraviolet nanowire nanolasers, Science, 2001, vol. 292, no. 5523, p. 1897.

    Article  Google Scholar 

  36. Wang, X., Summers, C.J., and Wang, Z.L., Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays, Nano Lett., 2004, vol. 4, no. 3, p. 423.

    Article  Google Scholar 

  37. Park, W.I., Kim, D.H., Jung, S.W., and Yi G.C., Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods, Appl. Phys. Lett., 2002, vol. 80, no. 22, p. 4232.

    Article  Google Scholar 

  38. Monge, M., Kahn, M.L., Maisonnat, A., and Chaudret, B., Room-temperature organometallic synthesis of soluble and crystalline ZnO nanoparticles of controlled size and shape, Angew. Chem., 2003, vol. 42, no. 43, p. 5321.

    Article  Google Scholar 

  39. Nobis, T., Kaidashev, E.M., Rahm, A., Lorenz, M., et al., Spatially inhomogeneous impurity distribution in ZnO micropillars, Nano Lett., 2004, vol. 4, no. 5, p. 797.

    Article  Google Scholar 

  40. Sun, Y., Fuge, G.M., Fox, N.A., Riley, D.J., et al., Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO film, Adv. Mater., 2005, vol. 17, no. 20, p. 2477.

    Article  Google Scholar 

  41. Lincot, D., Electrodeposition of semiconductors, Thin Solid Films, 2005, vol. 487, nos. 1–2, p. 40.

    Article  Google Scholar 

  42. Goux, A., Pauporté, T., Chivot, J., and Lincot, D., Temperature effects on ZnO electrodeposition, Electrochim. Acta, 2005, vol. 50, no. 11, p. 2239.

    Article  Google Scholar 

  43. Pauporté, T. and Jirka, I., A method for electrochemical growth of homogeneous nanocrystalline ZnO thin films at room temperature, Electrochim. Acta, 2009, vol. 54, no. 28, p. 7558.

    Article  Google Scholar 

  44. Pauporté, T. and Lincot, D., Electrodeposition of semiconductors for optoelectronic devices: Results on zinc oxide, Electrochim. Acta, 2000, vol. 45, no. 20, p. 3345.

    Article  Google Scholar 

  45. Aragonès, A.C., Palacios-Padrós, A., Caballero-Briones, F., and Sanz, F., Study and improvement of aluminum doped ZnO thin films: Limits and advantages, Electrochim. Acta, 2013, vol. 109, p. 117.

    Article  Google Scholar 

  46. Atourki, L., Ihalane, E.H., Kirou, H., Bouabid, K., et al., Characterization of nanostructured ZnO grown by linear sweep voltammetry, Sol. Energy Mater. Sol. Cells, 2016, vol. 148, p. 20.

    Article  Google Scholar 

  47. Verrier, C., Appert, E., Chaix-Pluchery, O., Rapenne, L., et al., Effects of the pH on the formation and doping mechanisms of ZnO nanowires using aluminum nitrate and ammonia, Inorg. Chem., 2017, vol. 56, no. 21, p. 13111.

    Article  Google Scholar 

  48. Izaki, M. and Omi, T., Electrolyte optimization for cathodic growth of zinc oxide films, J. Electrochem. Soc., 1996, vol. 143, no. 3, p. 53.

    Article  Google Scholar 

  49. Mclaren, A., Valdes-Solis, T., Li, G., and Tsang, S.C., Shape and size effects of ZnO nanocrystals on photocatalytic activity, J. Am. Chem. Soc., 2009, vol. 131, no. 35, p. 12 540.

    Article  Google Scholar 

  50. Sun, X. and Yi, Y., ZnO Nanostructures and Their Applications, Beijing: Jenny Stanford, 2012, chap. 1, p. 4.

    Google Scholar 

  51. Elias, J., Tena-Zaera, R., and Lévy-Clément, C., Electrochemical deposition of ZnO nanowire arrays with tailored dimensions, J. Electroanal. Chem., 2008, vol. 621, no. 2, p. 171.

    Article  Google Scholar 

  52. Nasr, B., Dasgupta, S., Wang, D., Mechau, N., et al., Electrical resistivity of nanocrystalline Al-doped zinc oxide films as a function of Al content and the degree of its segregation at the grain boundaries, J. Appl. Phys., 2010, vol. 108, no. 10, p. 103721.

    Article  Google Scholar 

  53. Harris, G.B., X. Quantitative measurement of preferred orientation in rolled uranium bars, Philos. Mag., 1952, vol. 43, no. 336, p. 113.

    Article  Google Scholar 

  54. Kıcır, N., Tüken, T., Erken, O., Gumusc, C., et al., Nanostructured ZnO films in forms of rod, plate and flower: Electrodeposition mechanisms and characterization, Appl. Surf. Sci., 2016, vol. 377, p. 191.

    Article  Google Scholar 

  55. Scherrer, P., Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl., 1918, vol. 2, p. 98.

    Google Scholar 

  56. Wang, X., Song, J., and Wang, Z.L., Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices, J. Mater. Chem., 2007, vol. 17, no. 8, p. 711.

    Article  Google Scholar 

  57. Lin, J.-C., Choudhury, A., Tsneg, Y., and Peng, K., Electroplating of ZnO influenced by the concentration of aluminum nitrate in the bath, Mater. Sci. Forum, 2016, vol. 863, p. 102.

    Article  Google Scholar 

  58. Liang, Y.-C., Microstructure and optical properties of electrodeposited Al-doped ZnO nanosheets, Ceram. Int., 2012, vol. 38, p. 119.

    Article  Google Scholar 

  59. Kemell, M., Dartigues, F., Ritala, M., and Leskelä, M., Electrochemical preparation of In and Al doped ZnO thin films for CuInSe2 solar cells, Thin Solid Films, 2003, vol. 434, nos. 1–2, p. 20.

    Article  Google Scholar 

  60. Cheng, H.-M., Chiu, W.-H., Lee, C.-H., Tsai, S.-Y., et al., Formation of branched ZnO nanowires from solvothermal method and dye-sensitized solar cells applications, J. Phys. Chem. C, 2008, vol. 112, no. 42, p. 16359.

    Article  Google Scholar 

  61. Pradhan, D. and Leung, K.T., Vertical growth of two-dimensional zinc oxide nanostructures on ITO-coated glass: effects of deposition temperature and deposition time, J. Phys. Chem. C, 2008, vol. 112, no. 5, p. 1357.

    Article  Google Scholar 

  62. Xu, F., Lu, Y., Xie, Y., and Liu, Y., Controllable morphology evolution of electrodeposited ZnO nano/micro-scale structures in aqueous solution, Mater. Des., 2009, vol. 30, no. 5, p. 1704.

    Article  Google Scholar 

  63. Srikant, V. and Clarke, D.R., On the optical band gap of zinc oxide, J. Appl. Phys., 1998, vol. 83, no. 10, p. 5447.

    Article  Google Scholar 

  64. Hammarberg, E., Prodi-Schwab, A., and Feldmann, C., Microwave-assisted polyol synthesis of aluminum- and indium-doped ZnO nanocrystals, J. Colloid Interface Sci., 2009, vol. 334, no. 1, p. 29.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manale Battas.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manale Battas, Atourki, L., Bouabid, K. et al. Investigations on the Growth Mechanism of Nanostructured ZnO: Shedding Light on the Effect of Al3+ Doping. Surf. Engin. Appl.Electrochem. 57, 1–9 (2021). https://doi.org/10.3103/S1068375521010075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375521010075

Keywords:

Navigation