Skip to main content
Log in

Estimation of Methane Fluxes in the Ecosystem of the Palsa Mire in the Far North Taiga Subzone in the European Northeast of Russia (According to the Results of Two Measurement Methods)

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

Methane emission from a palsa mire in the European Northeast of Russia is estimated based on the results of measurements by the method of static chambers and of eddy covariance during the growing season. Hollows make the main contribution to the ecosystem flux: the rate of methane emission per season from these relief elements averages 5.7 mg/(m2 h) and is controlled by soil temperature and water table level. The methane emission from the ridges and the peat mound is noticeably lower: 0.85 and 0.28 mg/(m2 h), respectively. The methane flux to the atmosphere from the peat mound depends on the thickness, temperature, and humidity of the active peat layer. The cumulative ecosystem flux of methane into the atmosphere in May–September, obtained by the method of chambers and of eddy covariance, corresponds to 9.5 and 11.4 g/m2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Baldocchi, D.D., Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future, Global Change Biol., 2003, vol. 9, pp. 479–492

    Article  Google Scholar 

  2. Bubier, J.L., Moore, T.R., Bellisario, L., Comer, N.T., and Crill, P.M., Ecological controls on methane emissions from a northern peatland complex in the zone of discontinuous permafrost, Manitoba, Canada, Global Biogeochem. Cycles, 1995, vol. 9, no. 4, pp. 455–470.

    Article  CAS  Google Scholar 

  3. Christensen, T., Jackowicz-Korczynski, M., Aurela, M., Crill, P., Heliasz, M., Mastepanov, M., and Friborg, T., Monitoring the multi-year carbon balance of a Subarctic palsa mire with micrometeorological techniques, AMBIO, 2012, vol. 41, pp. 207–217. https://doi.org/10.1007/s13280-012-0302-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Euskirchen, E.S., Edgar, C.W., Turetsky, M.R., Waldrop, M.P., and Harden, J.W., Differential response of carbon fluxes to climate in three peatland ecosystems that vary in the presence and stability of permafrost, J. Geophys. Res.: Biogeosci., 2014, vol. 119, pp. 1576–1595. doi 10.10022014JG002683

  5. Gorham, E., Northern peatlands: role in the carbon cycle and probable responses to climatic warming, Ecol. Appl., 1991, vol. 1, no. 2, pp. 182–195.

    Article  PubMed  Google Scholar 

  6. Hargreaves, K.J., Fowler, D., Pitcairn, C.E.R., and Aurela, M., Annual methane emission from Finnish mires estimated from eddy covariance campaign measurements, Theor. Appl. Climatol., 2001, vol. 70, no. 1, pp. 203–213.

    Article  Google Scholar 

  7. Hartley, I.P., Hill, T.C., Wade, T.J, Clement, R.J., Moncrieff, J.B., Prieto-Blanco, A., Disney, M.I., Huntley, B., Williams, M., Howden, N.J.K., Wookey, P.A., and Baxter, R., Quatifying landscape-level fluxes in subarctic Finland using a multiscale approach, Global Change Biol., 2015, vol. 21, pp. 3712–3725. https://doi.org/10.1111/gcb.12975

    Article  Google Scholar 

  8. Heikkinen, J.E., Virtanen, T., Huttunen, J.T., Elsakov, V., and Martikainen, P.J., Carbon balance in East European tundra, Global Biogeochem. Cycles, 2004, vol. 18, no. 1, p. GB002054. https://doi.org/10.1029/2003GB002054

    Article  CAS  Google Scholar 

  9. Kaverin, D.A. and Pastukhov, A.V., Temperature state of soils of palsa mire in the zone of rare island distribution of permafrost (European Northeast of Russia), Kriosfera Zemli, 2018, no. 5, pp. 47–56.

  10. Korrensalo, A., Mӓnnistӧ, E., Alekseychik, P., Mammarella, I., Rinne, J., Vesala, T., and Tuittila, E.-S., Small spatial but large sporadic variability in methane emission measured from a patterned boreal bog, Biogeosci. Discuss., 2017. https://doi.org/10.5194/bg-2017-443

    Book  Google Scholar 

  11. Łakomiec, P., Holst, J., Friborg, Th., Crill, P., Rakos, N., Kljun, N., Olsson, P.-O., Eklundh, L., Persson, A., and Rinne, J., Field-scale CH4 emission at subarctic mire with heterogeneous permafrost thaw status, Biogeosciences, 2021, vol. 18, pp. 5811–5830. doi 105194/bg-18-5811-2021

  12. Malhotra, A. and Roulet, N.T., Environmental correlates of peatland carbon fluxes in a thawing landscape: do transitional thaw stages matter?, Biogeosciences, 2015, vol. 12, no. 10, pp. 3119-3130. https://doi.org/10.5194/bg-12-3119-2015

    Article  Google Scholar 

  13. Miglovets, M.N., Zagirova, S.V., Goncharova, N.N., and Mikhailov, O.A., Total methane emission from the palsa mire of the extreme northern taiga in the warm period of the year, Byull. Inst. Biol. Komi Nauchn. Tsentra Ural. Otd. Ross. Otd. Nauk., 2018, vol. 1, no. 203, pp. 34–38. https://doi.org/10.31140/j.vestnikib.2018.1(203).10

    Article  Google Scholar 

  14. Miglovets, M.N., Zagirova, S.V., Goncharova, N.N., and Mikhailov, O.A., Methane emission from a palsa mire in the Northeast of the European part of Russia, Russ. Meteorol. Hydrol., 2021, vol. 46, pp. 52–59.

    Article  Google Scholar 

  15. Mikhailov, O.A., Miglovets, M.N., and Zagirova, S.V., Vertical methane fluxes in mesooligotrophic boreal peatland in European Northeast Russia, Contemp. Probl. Ecol., 2015, vol. 8, pp. 368–375.

    Article  Google Scholar 

  16. Nykänen, H., Heikkinen, J. E., Pirinen, L., Tiilikainen, K., and Martikainen, P.J., Annual CO2 exchange and CH4 fluxes on a subarctic palsa mire during climatically different years, Global Biogeochem. Cycles, 2003, vol. 17, no. 1, p. 1018. https://doi.org/10.1029/2002GB00186

    Article  Google Scholar 

  17. Rastitel’nost’ evropeiskoi chasti SSSR (Vegetation of the European USSR), Leningrad: Nauka, 1980.

  18. Rinne, J., Tuittila, E.-S., Peltola, O., Li, X., Raivonen, M., Alekseychik, P., Haapanala, S., Pihlatie, M., Aurela, M., Mammarella, I., and Vesala, T., Temporal variation of ecosystem scale methane emission from a boreal fen in relation to temperature, water table position, and carbon dioxide fluxesm, Global Biogeochem. Cycles, 2018, vol. 32, no. 7, pp. 1087–1106. https://doi.org/10.1029/2017GB005747

    Article  CAS  Google Scholar 

  19. Sabrekov, A.F., Glagolev, M.V., Kleptsova, I.E., Bashkin, V.N., Barsukov, P.A., and Maksyutov, Sh.Sh., Contribution of palsa to methane emission from West Siberian tundra wetlands, Dinamika Okruzhayushchei Sredy Global’noe Izmenenie Klimata, 2011, vol. 2, no. 2, pp. 1–11.

    Google Scholar 

  20. Schneider, J., Jungkunst, H.F., Wolf, U., Schreiber, P., Gazovic, M., Miglovets, M., Mikhaylov, O., Grunwald, D., Erasmi, S., Wilmking, M., and Kutzbach, L., Russian boreal peatlands dominate the natural European methane budget, Environ. Res. Lett., 2016, vol. 11, no. 1, p. 014004. https://doi.org/10.1088/1748-9326/11/1/014004

    Article  CAS  Google Scholar 

  21. Sun, L., Song, Ch., Lafleur, P.V., Miao, Y., Wang, X., Gong, Ch., Qiao, T., Yu, X., and Tan, W., Wetland-Atmosphere methane exchange in Northeast China: A comparison of permafrost peatland and freshwater wetland, Agric. For. Meteorol., 2018, vol. 249, pp. 239–249. https://doi.org/10.1016/j.agrformet.2017.11.009

    Article  Google Scholar 

  22. Vompersky, S.E., Tsyganova, O.P., Kovalev, A.G., Glukhova, T.V., and Valyaeva, N.A., Swampiness of the territory of Russia as a factor of atmospheric carbon binding, in Krugovorot ugleroda na territorii Rossii (Carbon Cycle in the Territory of Russia), Zavarzin, G.A., Moscow, 1999, pp. 124–145.

  23. Wagner, D., Wille, C., Kobabe, S., and Pfeiffer, E.M., Simulation of freezing-thawing cycles in a permafrost microcosm for assessing microbial methane production under extreme conditions, Permafrost Periglacial Processes, 2003, vol. 14, no. 4, pp. 367–374.

    Article  Google Scholar 

  24. Yu, L., Wang, H., Wang, G., Song, W., Huang, Y., Li, S.-G., Liang, N., Tang, Y., and He, J.-S., A comparison of methane emission measurements using eddy covariance and manual and automated chamber-based techniques in Tibetan Plateau alpine wetland, Environ. Pollut., 2013, vol. 181, pp. 81–90. https://doi.org/10.1016/j.envpol.2013.06.018

    Article  CAS  PubMed  Google Scholar 

  25. Yu, X., Song, Ch., Sun, L., Wang, X., Shi, F., Cui, Q., and Tan, W., Growing season methane emission from a permafrost peatland of northern China: Observations using open-path eddy covariance method, Atmos. Environ., 2017, vol. 153, pp. 135–149. https://doi.org/10.1016/j.atmosenv.2017.01.026

    Article  CAS  Google Scholar 

  26. Zhu, X., Zhuang, Q., Chen, M., Sirin, A., Melillo, J., Kicklighter, Sokolov, A., and Song, L., Rising methane emission in response to climate change in Northern Eurasia during the 21st century, Environ. Res. Lett., 2011, vol. 6, no. 4, pp. 1–9. https://doi.org/10.1088/1748-9326/6/4/045221

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank O.A. Mikhailov, research scientist, for participating in the collection of terrain material and to the S.P. Shvetsov, lead engineer, for the maintaining measurement systems.

Funding

This work was performed as part of the research theme Zonal Regularities of the Dynamics of Structure and Productivity of Primary and Anthropogenically Transformed Phytocenoses of Forest and peatland Ecosystems of the European Northeast of Russia (no. 122040100031-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Zagirova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Bel’chenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zagirova, S.V., Miglovets, M.N. & Yakubenko, S.V. Estimation of Methane Fluxes in the Ecosystem of the Palsa Mire in the Far North Taiga Subzone in the European Northeast of Russia (According to the Results of Two Measurement Methods). Contemp. Probl. Ecol. 16, 118–127 (2023). https://doi.org/10.1134/S1995425523020142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425523020142

Keywords:

Navigation