Skip to main content
Log in

Numerical Simulation of World Ocean Effects on Temperature and Ozone in the Lower and Middle Atmosphere

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The description of the ocean-atmosphere coupling is presented. The paper analyzes the data of MERRA, JRA, ERA-Interim, and ERA-20Century reanalyses and the re suits of CCM chemistry-climate model simulations based on monthly mean values of air temperature and ozone mixing ratio at the levels of 925 and 20 hPa during 1980–2015. The comparison with data on sea surface temperature is provided. The results of simula-ion are in good agreement with reanalysis data for the atmospheric surface layer, whereas essential differences for the stratosphere require a more detailed analysis. According to the model results, air temperature rises in the surface layer, and air temperature and ozone mixing ratio decrease in the stratosphere. Reanalysis data do not coniradict simuiaiion results for the troposphere but differ significantly for the stratosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Z. Ariel’ and L. A. Strokina, Dynamic Characteristics of interaction between the Atmosphere and World Ocean Surface (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  2. A. B. Bendik and V. N. Yakovlev, “On the Rapprochement of Approaches to the Understanding of El Niño/La Niña Phenomenon,” Vestnik Rossiiskogo Gosudarstvennogo Universiteta im. Kanta, No. 1 (2010) [in Russian].

  3. E. M. Volodin, V. Ya. Galin, and A. S. Gritsun, Mathematical Modeling of Terrestrial System, Ed. by N. G. Yakovlev (MAKS Press, Moscow, 2016) [in Russian].

  4. V. Ya. Galin, S. P. Smyshlyaev, and E. M. Vologin, “Combined Chemistry-Climate Model of the Atmosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 43 (2007) [Izv., Atmos. Oceanic Phys., No. 4, 43 (2007)].

    Google Scholar 

  5. Yu. P. Doronin, “Ice Cover Effects on the Ocean-Atmosphere Heat Exchange,” Problemy Arktiki i Antarktiki, No. 43–44 (1974) [in Russian].

  6. E. A. Zhadin, “Arctic Oscillation and Interannual Variations in Sea Surface Temperature in the Atlantic and Pacific Oceans,” Meteorol. Gidrol., No. 8 (2001) [Russ. Meteorol. Hydrol., No. 8 (2001)].

  7. E. A. Zhadin, “Long-term Cyclicity of Ocean Surface Temperature, Lower Stratospheric Temperature, and Ozone in Midlatitudes,” Meteorol. Gidrol., No. 5 (1993) [Russ. Meteorol. Hydrol., No. 5 (1993)].

  8. E. A. Zhadin, “Interannual Ozone Anomalies and Temperature Variations of the Atlantic Ocean,” Meteorol. Gidrol., No. 7 (1992) [Russ. Meteorol. Hydrol., No. 7 (1992)].

  9. S. S. Lappo, S. K. Gulev, and A. E. Rozdestvenskii, Large-scale Heat Interaction in the Ocean-Atmosphere System and Energy Active Zones of the World Ocean (Gidrometeoizdat, Leningrad, 1990) [in Russian].

    Google Scholar 

  10. S. P. Smyshlyaev, V. Ya. Galin, E. M. Atlaskin, and P. A. Blakitnaya, “Simulation of the Indirect Impact that the 11-Year Solar Cycle Has on the Gas Composition of the Atmosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 5, 46 (2010) [Izv., Atmos. Oceanic Phys., No. 5, 46 (2010)].

    Google Scholar 

  11. S. P. Smyshlyaev, V. Ya. Galin, G. Shaariibuu, and M. A. Motsakov, “Modeling the Variability of Gas and Aerosol Components in the Stratosphere of Polar Regions,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 3, 46 (2010) [Izv., Atmos. Oceanic Phys., No. 3, 46 (2010)].

    Google Scholar 

  12. A. Czaja, “Ocean-atmosphere Coupling in Midlatitudes: Does it Invigorate or Damp the Storm Track?”, in ECMWF Seminar on Seasonal Prediction, 3–7 September 2012.

  13. ERA-Interim, https://doi.org/www.ecmwf.int/en/research/climate-reanalysis/era-interim.

  14. E. L. Fleming, S. Chandra, J. J. Barnett, and M. Corney, “Zonal Mean Temperature, Pressure, Zonal Wind and Geopotential Height as Functions of Latitude,” Adv. Space Res., No. 12, 10 (1990).

    Google Scholar 

  15. J. Hansen, M. Sato, R. Ruedy, A. Lacis, and V. Oinas, “Global Warming in the Twenty-first Century: An Alternative Scenario,” Proc. Natl. Acad. Sci., 97 (2000).

    Article  Google Scholar 

  16. Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007, Ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller (Cambridge Univ. Press, New York, 2007).

    Google Scholar 

  17. JRA-55—the Japanese 55-year Reanalysis; https://doi.org/jra.kishou.go.jp/JRA-55/index_en.html#news.

  18. E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, A. Leetma, R. Reynolds, R. Jenne, and D. Joseph, “The NCEP/NCAR 40-year Reanalysis Project,” Bull. Amer. Meteorol. Soc., 77 (1996).

    Article  Google Scholar 

  19. R. D. McPeters, P. K. Bharita, A. J. Krueger, and J. R. Herman, Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide, NASA Reference Publication 1384 (1996).

  20. NASA MERRA NCAR Climate Data Guide, https://doi.org/climatedataguide.ucar.edu/climate-data/nasa-merra.

  21. I. C. Prentice, G. D. Farquhar, M. J. R. Fasham, M. L. Goulden, M. Heimann, V. J. Jaramillo, H. S. Kheshgi, C. Le Qunrn, R. J. Scholes, D. W. R. Wallace, D. Archer, M. R. Ashmore, O. Aumont, D. Baker, M. Battle, M. Bender, L. P. Bopp, P. Bousquet, K. Caldeira, P. Ciais, P. M. Cox, W. Cramer, F. Dentener, I. G. Enting, C. B. Field, P. Friedlingstein, E. A. Holland, R. A. Houghton, J. I. House, A. Ishida, A. K. Jain, I. A. Janssens, F. Joos, T. Kaminski, C. D. Keeling, R. F. Keeling, D. W. Kicklighter, K. E. Kohfeld, W. Knorr, R. Law, T. Lenton, K. Lindsay, E. Maier-Reimer, A. C. Manning, R. J. Matear, A. D. McGuire, J. M. Melillo, R. Meyer, M. Mund, J. C. Orr, S. Piper, K. Plattner, P. J. Rayner, S. Sitch, R. Slater, S. Taguchi, P. P. Tans, H. Q. Tian, M. F. Weirig, T. Whorf, A. Yool, L. Pitelka, and A. Ramirez Rojas, “The Carbon Cycle and Atmospheric Carbon Dioxide,” in Third Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change 2001: The Scientific Basis (Cambridge Univ. Press, Cambridge, UK, 2001).

    Google Scholar 

  22. K. Taylor, D. Williamson, and F. Zwiers, The Sea Surface Temperature and Sea-ice Concentration Boundary Conditions for AMIP II Simulations, PCMDI Report No. 60 (2000).

  23. K. E. Taylor, D. Williamson, and F. Zwiers, The Sea Surface Temperature and Sea-ice Concentration Boundary Conditions for AMIP II Simulations. Program for Climate Model Diagnosis and Intercomparison (University of California, Lawrwnce Livermore National Laboratory, 2000).

  24. Weather and Climate Change, https://doi.org/www.metoffice.gov.uk/.

Download references

Funding

The research was performed at the Russian State Hydrometeorological University in the framework of the State Assignment of the Ministry of Higher Education and Science of the Russian Federation (project 5.6493.2017/8.9) and was supported by the Russian Foundation for Basic Research (grant 17-05-01277) and Russian Science Foundation (grant 19-17-00198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Jakovlev.

Additional information

Russian Text © The Author(s), 2019, published in Meteorologiya i Gidrologiya, 2019, No. 9, pp. 25–37.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakovlev, A.R., Smyshlyaev, S.P. Numerical Simulation of World Ocean Effects on Temperature and Ozone in the Lower and Middle Atmosphere. Russ. Meteorol. Hydrol. 44, 594–602 (2019). https://doi.org/10.3103/S1068373919090036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373919090036

Keywords

Navigation