Skip to main content
Log in

Abstract

In this paper, we discuss the existence and uniqueness of solution of the singular quadratic integral equation (SQIE). The Fredholm integral term is assumed in position with singular kernel. Under certain conditions and new discussions, the singular kernel  will tend to a  logarithmic kernel. Then,  using Chebyshev  polynomial, a main of spectral relationships are stated and used to obtain the solution of the singular quadratic integral equation with the logarithmic kernel and a smooth kernel. Finally, the Fredholm integral equation of the second kind is established and its solution is discussed, also numerical results are obtained and the error, in each case, is computed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. M. A. Abdou, A. A. Soliman, and M. A. Abdel-Aty, ‘‘On a discussion of Volterra–Fredholm integral equation with discontinuous kernel,’’ J. Egypt Math. Soc. 28, 11 (2020). https://doi.org/10.1186/s42787-020-00074-8

    Article  MathSciNet  MATH  Google Scholar 

  2. M. A. Abdou, M. E. Nasr, and M. A. Abdel-Aty, ‘‘A study of normality and continuity for mixed integral equations,’’ J. Fixed Point Theory Appl. 20, 5 (2018). https://doi.org/10.1007/s11784-018-0490-0

    Article  MathSciNet  MATH  Google Scholar 

  3. M. A. Abdou, M. E. Nasr, and M. A. Abdel-Aty, ‘‘Study of the normality and continuity for the mixed integral equations with Phase-Lag term,’’ Int. J. Math. Anal. 11, 787–799 (2017). https://doi.org/10.12988/ijma.2017.7798

    Article  Google Scholar 

  4. H. Adibi and P. Assari, ‘‘Chebyshev wavelet method for numerical solution of Fredholm integral equations of the first kind,’’ Math. Probl. Eng. 2010, 138408 (2010). https://doi.org/10.1155/2010/138408

    Article  MathSciNet  MATH  Google Scholar 

  5. N. K. Artiunian, ‘‘Plane contact problems of the theory of creel,’’ Appl. Math. Mech. 23, 901–923 (1959).

    Google Scholar 

  6. S. András, ‘‘Weakly singular Volterra and Fredholm–Volterra integral equations,’’ Stud. Univ. Babes-Bolyai, Math. 48 (3), 147–155 (2003).

    Google Scholar 

  7. Z. Avazzadeh and M. Heydari, ‘‘Chebyshev polynomials for solving two dimensional linear and nonlinear integral equations of the second kind,’’ Comput. Appl. Math. 31, 127–142 (2012). https://doi.org/10.1590/S1807-03022012000100007

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Babolian and A. Shahsavaran, ‘‘Numerical solution of nonlinear Fredholm integral equations of the second kind using Haar wavelets,’’ J. Comput. Appl. Math. 225, 87–95 (2009). https://doi.org/10.1016/j.cam.2008.07.003

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Babolian, K. Maleknejad, M. Mordad, and B. Rahimi, ‘‘A numerical method for solving Fredholm–Volterra integral equations in two-dimensional spaces using block pulse functions and an operational matrix,’’ J. Comput. Appl. Math. 235, 3965–3971 (2011). https://doi.org/10.1016/j.cam.2010.10.028

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Babolian and M. Mordad, ‘‘A numerical method for solving systems of linear and nonlinear integral equations of the second kind by hat basis functions,’’ Comput. Math. Appl. 62, 187–198 (2011). https://doi.org/10.1016/j.camwa.2011.04.066

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Bazm, ‘‘Bernoulli polynomials for the numerical solution of some classes of linear and nonlinear integral equations,’’ J. Comput. Appl. Math. 275, 44–60 (2015). https://doi.org/10.1016/j.cam.2014.07.018

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Brunner, ‘‘On the numerical solution of nonlinear Volterra–Fredholm integral equations by collocation methods,’’ SIAM J. Numer. Anal. 27, 987–1000 (1990). https://doi.org/10.1137/0727057

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Delves and J. Mohammad, Computational Methods for Integral Equations (Cambridge Univ. Press, Cambridge, 1988).

    Google Scholar 

  14. A. M. A. El-Sayed, H. H. G. Hashem, and Y. M. Y. Omar, ‘‘Positive continuous solution of a quadratic integral equation of fractional orders,’’ Math. Sci. Lett. 2 (1), 19–27 (2013). https://doi.org/10.12785/msl/020103

    Article  Google Scholar 

  15. H. Fatahi, J. Saberi-Nadjafi, and E. Shivanian, ‘‘A new spectral meshless radial point interpolation (SMRPI) method for the two-dimensional Fredholm integral equations on general domains with error analysis,’’ J. Comput. Appl. Math. 294, 196–209 (2016). https://doi.org/10.1016/j.cam.2015.08.018

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Frankel, ‘‘A Galerkin solution to a regularized Cauchy singular Integro–differential equation,’’ Q. Appl. Math. 53, 245–258 (1995). https://doi.org/10.1090/qam/1330651

    Article  MathSciNet  MATH  Google Scholar 

  17. C. D. Green, Integral Equation Methods (Nelsson, New York, 1969).

    MATH  Google Scholar 

  18. M. S. Hashmi, N. Khan, and S. Iqbal, ‘‘Numerical solutions of weakly singular Volterra integral equations using the optimal homotopy asymptotic method,’’ Comput. Math. Appl. 64, 1567–1574 (2012). https://doi.org/10.1016/j.camwa.2011.12.084

    Article  MathSciNet  MATH  Google Scholar 

  19. E. Kreyszig, Introductory, Functional Analysis with Applications (Wiley, New York, 1989).

    MATH  Google Scholar 

  20. Kh. A. Khachatryan, ‘‘On a class of nonlinear integral equations with a noncompact operator,’’ J. Contemp. Math. Anal. 46, 89–100 (2011). https://doi.org/10.3103/S106836231102004X

    Article  MathSciNet  MATH  Google Scholar 

  21. K. Maleknejad and K. Mahdiani, ‘‘Solving nonlinear mixed Volterra–Fredholm integral equations with two dimensional block-pulse functions using direct method,’’ Commun. Nonlinear Sci. Numer. Simul. 16, 3512–3519 (2011). https://doi.org/10.1016/j.cnsns.2010.12.036

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Micula, ‘‘On some iterative numerical methods for a Volterra functional integral equation of the second kind,’’ J. Fixed Point Theory Appl. 19, 1815–1824 (2017). https://doi.org/10.1007/s11784-016-0336-6

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Micula, ‘‘An iterative numerical method for Fredholm–Volterra integral equations of the second kind,’’ Appl. Math. Comput. 270, 935–942 (2015). https://doi.org/10.1016/j.amc.2015.08.110

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Mirzaee and E. Hadadiyan, ‘‘Numerical solution of linear Fredholm integral equations via two-dimensional modification of hat functions,’’ Appl. Math. Comput. 250, 805–816 (2015). https://doi.org/10.1016/j.amc.2014.10.128

    Article  MathSciNet  MATH  Google Scholar 

  25. F. Mirzaee and S. F. Hoseini, ‘‘Application of Fibonacci collocation method for solving Volterra–Fredholm integral equations,’’ Appl. Math. Comput. 273, 637–644 (2016). https://doi.org/10.1016/j.amc.2015.10.035

    Article  MathSciNet  MATH  Google Scholar 

  26. F. Mirzaee and N. Samadyar, ‘‘Convergence of 2D-orthonormal Bernstein collocation method for solving 2D-mixed Volterra–Fredholm integral equations,’’ Trans. A. Razmadze Math. Inst. 172, 631–641 (2018). https://doi.org/10.1016/j.trmi.2017.09.006

    Article  MathSciNet  MATH  Google Scholar 

  27. F. Mirzaee and E. Hadadiyan, ‘‘Application of modified hat functions for solving nonlinear quadratic integral equations,’’ Iran J. Numer. Anal. Optim. 6 (2), 65–84 (2016). https://doi.org/10.22067/ijnao.v6i2.46565

    Article  MATH  Google Scholar 

  28. N. I. Muskhelishvili, Singular Integral Equations (Noordhoff, Leiden, 1953).

    MATH  Google Scholar 

  29. M. E. Nasr and M. A. Abdel-Aty, ‘‘Analytical discussion for the mixed integral equations,’’ J. Fixed Point Theory Appl. 20, 115 (2018). https://doi.org/10.1007/s11784-018-0589-3

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Palamora, ‘‘Product integration for Volterra integral equations of the second kind with weakly singular kernels,’’ Math. Comput. 65, 1201–1212 (1996). https://doi.org/10.1090/S0025-5718-96-00736-3

    Article  MathSciNet  Google Scholar 

  31. G. Yu. Popov, Contact Problems for a Linearly Deformable Functions (Vyscha Shkola, Kiev, 1982).

    Google Scholar 

  32. J. Saberi-Nadjafi and A. Ghorbani, ‘‘He’s homotopy perturbation method: An effective tool for solving nonlinear integral and integro-differential equations,’’ Comput. Math. Appl., 58, 2379–2390 (2009). https://doi.org/10.1016/j.camwa.2009.03.032

    Article  MathSciNet  MATH  Google Scholar 

  33. V. V. Ter-Avetisyan, ‘‘On dual integral equations in the semiconservative case,’’ J. Contemp. Math. Anal., 47, 62–69 (2012). https://doi.org/10.3103/S1068362312020021

    Article  MathSciNet  MATH  Google Scholar 

  34. S. Yüzbaşl, N. Şahin, and M. Sezer, ‘‘Bessel polynomial solutions of high-order linear Volterra integro-differential equations,’’ Comput. Math. Appl., 62, 1940–1956 (2011). https://doi.org/10.1016/j.camwa.2011.06.038

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are very grateful to the referees and editors for their useful comments that led to improvement of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. Abdel-Aty, M. A. Abdou or A. A. Soliman.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Aty, M.A., Abdou, M.A. & Soliman, A.A. Solvability of Quadratic Integral Equations with Singular Kernel. J. Contemp. Mathemat. Anal. 57, 12–25 (2022). https://doi.org/10.3103/S1068362322010022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068362322010022

Keywords:

Navigation