Skip to main content
Log in

Cocrystallization of Max-Phases in the Ti–Al–C System

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The structure and phase transformations in the Ti–Al–C system were studied by X-ray diffraction, differential thermal analysis, and scanning electron microscopy, including energy-dispersive X-ray spectroscopy and electron backscatter diffraction on samples obtained by arc melting and annealing at high temperatures. The ternary system has a cocrystallization region for the two MAX-phases, N and H. The Ti41.5Al38.5C20 samples contain three phases at all experimental temperatures (from 650 to 1660°C): Ti3AlC2 (N-phase of Ti3SiC2 type), Ti2AlC (H, Cr2AlC type), and binary intermetallic TiAl3 (ε, its own crystal type). The morphology of the as-cast alloy and annealed samples (at temperatures above and below the solidus temperature, 1660 and 1250°C, respectively) shows that invariant solidification at 1405°C (solidus temperature) precedes the univariant simultaneous solidification of N- and H-phases, i.e. both MAX-phases separating from the melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. * Sc2O3 crucibles, 20 °C/min heating and cooling rate.

References

  1. M. W. Barsoum and T. El-Raghy, “The MAX phases: unique new carbide and nitride materials,” Am. Sci., 89, 334–343 (2001).

    Article  Google Scholar 

  2. P. Eklund, M. Beckers, U. Jansson, et al., “The M n+1AX n phases: materials science and thin-film processing,” Thin Solid Films, 518, No. 8, 1851–1878 (2010).

    Article  Google Scholar 

  3. M. A. Pietzka, Structural Chemistry, Phase Equilibria, and Chemical Analysis in the Systems Ti–Al–C and Ti–Al–N: Thesis [in German], University of Vienna (1992), p. 52.

  4. M. A. Pietzka and J. C. Schuster, “Summary of constitutional data on the aluminum–carbon–titanium system,” J. Phase Equilib., 15, No. 4, 392–400 (1994).

    Article  Google Scholar 

  5. Zh. Ge, K. Chen, J. Guo, et al., “Combustion synthesis of ternary carbide Ti3AlC2 in Ti–Al–C system,” J. Eur. Ceram. Soc., 23, 567–574 (2003).

    Article  Google Scholar 

  6. L. Cornish, G. Cacciamani, D. Cupid, and J. De Keyzer, “Aluminum–carbon–titanium,” in: Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, W. Martinsen (ed.), New Series. Group IV: Physical Chemistry, G. Effenberg and S. Ilyenko (eds.), Ternary Alloy Systems, Phase Diagrams, Crystallographic and Thermodynamic Data Critically Evaluated by MSIT, Vol. 11E1, Springer-Verlag, Berlin, Heidelberg (2009), pp. 41–71.

  7. P. Villars and L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed., Handbook in 4 Vols., ASM Int. Mater. Park, Ohio (1991).

  8. V. T. Witusiewicz, A. A. Bondar, U. Hecht, et al., “The Al–B–Nb–Ti system. III. Thermodynamic reevaluation of the constituent binary system Al–Ti,” J. Alloys Compd., 465, No. 1–2, 64–77 (2008).

    Article  Google Scholar 

  9. J. Braun and M. Ellner, “Phase equilibria investigations on the aluminum-rich part of the binary system Ti–Al,” Met. Mater. Trans. A, 32A, 1037–1048 (2001).

    Article  Google Scholar 

  10. V. T. Witusiewicz, A. A. Bondar, U. Hecht, et al., “Experimental study and thermodynamic remodeling of the ternary Ti–Al–C system,” in: Proc. Discussion Meeting on Thermodynamics of Alloys (TOFA), Pula, Croatia (2012), p. 2.

  11. M. Pirani and H. Alterthum, “On the method for determining the melting point of refractory metals,” Z. Elektrochem., 29, No. 1–2, 5–8 (1923).

    Google Scholar 

  12. R. A. Young, A. Sakthivel, T. S. Moss, and C. O. Paiva-Santos, “DBWS-9411—an upgrade of the DBWS programs for Rietveld refinement with PC and mainframe computers,” J. Appl. Crystallogr., 28, 366–367 (1995).

    Article  Google Scholar 

  13. Ju. A. Kocherzhinsky, “Differential thermocouple up to 2450°C and thermographic investigations of refractory silicides,” in: Proc. Third ICTA (Davos) Therm. Analysis, Birkhäuser Verlag, Basel (1971), Vol. 1, pp. 549–559.

  14. Yu. A. Kocherzhinsky, E. A. Shishkin, and V. I. Vasilenko, “DTA apparatus with a thermocouple sensor to 2200°C,” in: Phase Diagrams of Metallic Systems [in Russian], Nauka, Moscow (1971), pp. 245–249.

  15. W. J. Boettinger, U. R. Kattner, K.-W. Moon, and J. H. Perepezko, DTA and Heat-flux DSC Measurements of Alloy Melting and Freezing: NIST Recommended Practice Guide, Special Publication 960-15, National Institute of Standards and Technology, Washington, USA (2006), p. 90.

  16. J. Grobner, H. L. Lukas, and F. Aldinger, “Thermodynamic calculations in the Y–Al–C system,” J. Alloys Compd., 220, 8–14 (1995).

    Article  Google Scholar 

  17. L. F. S. Dumitrescu, M. Hillert, and B. Sundman, “A reassessment of Ti–C–N based on available assessments of Ti–N and Ti–C,” Z. Metallkd., 90, No. 7, 534–541 (1999).

    Google Scholar 

  18. V. T. Witusiewicz, B. Hallstedt, A. A. Bondar, et al., “Thermodynamic description of the Al–C–Ti system,” J. Alloys Compd., 623, 480–496 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bondar.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 54, Nos. 7–8 (504), pp. 111–124, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sleptsov, S.V., Bondar, A.A., Witusiewicz, V.T. et al. Cocrystallization of Max-Phases in the Ti–Al–C System. Powder Metall Met Ceram 54, 471–481 (2015). https://doi.org/10.1007/s11106-015-9738-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-015-9738-z

Keywords

Navigation