Skip to main content
Log in

Construction of Gallium–Tin Nonequilibrium State Diagram and Its Analysis

  • PHYSICAL METALLURGY AND HEAT TREATMENT
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Overcooling of gallium–tin alloys under normal conditions has been studied by thermal analysis. The following samples have been analyzed: Ga (I); two hypoeutectic alloys: 95% Ga + 5% Sn (II), 90% Ga + 10% Sn (III); eutectic alloy: 96.3% Ga + 13.7% Sn (IV); and five hypereutectic alloys with Sn content of 20% (V), 35% (VI), 50% (VII), 80% (VIII), and pure tin (IX). A nonequilibrium state diagram of this system is constructed. Herewith, the eutectic composition does not vary and the eutectic temperature decreases to 5.5°C, that is, 26°C below that of three-phase eutectic equilibrium. The eutectic temperature does not actually vary upon a variation of cooling rates of eutectic alloy from 0.06 to 60°C/min. It has been detected that a slight decrease in overcooling is expected in the hypoeutectic region, whereas in the hypereutectic region overcooling increases while the alloy composition approaches eutectic. Activities and activity coefficients of components on the lines of equilibrium and nonequilibrium liquidus have been calculated. It is demonstrated that the activities on the lines of both equilibrium and nonequilibrium liquidus decrease in a predictable manner, and the activity coefficients increase while the composition approaches eutectic. Concentration paths of equilibrium and nonequilibrium crystallization are shown in the state diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Liang Zhao, Yuming Xing Ze, and Wang Xin Liu, The passive thermal management system for electronic device using low-melting-point alloy as phase change material, Appl. Therm. Eng., 2017, vol. 125, pp. 317–327. https://doi.org/10.1016/j.applthermaleng.2017.07.004

    Article  CAS  Google Scholar 

  2. Krayukhin, V.I., RF Patent C09K3/10, 2009. Krayukhin, V.I., RF Patent 2345865 C2, 2009.

  3. Roy, Ch.K., Bhavnani, S., Hamilton, M.C., Wayne, J.R., Knight, R.W., and Harris, D.K., Thermal performance of low melting temperature alloys at the interface between dissimilar materials, Appl. Therm. Eng., 2016, vol. 99, pp. 72–79. https://doi.org/10.1016/j.applthermaleng.2016.01.036

    Article  CAS  Google Scholar 

  4. Chentsov, V.P., Shevchenko, V.G., Mozgovoi, A.G., and Pokrasin, M.A., Density and surface tension of heavy liquid-metal coolants: gallium and indium, Inorg. Mater.: Appl. Res., 2011, vol. 2, no. 5, pp. 468–473.

    Article  Google Scholar 

  5. Ivanova, A.G. and Gerasimov, S.F., Dependence of the phase transition temperature of the eutectic alloy Ga‒Zn on its morphology, Izmer. Tekh., 2009, no. 1, pp. 34–37.

  6. Diagrammy sostoyaniya dvoinykh metallicheskikh system. Spravochnik (State Diagrams of Binary Metal Systems. Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1997, vol. 2, pp. 657–658.

    Google Scholar 

  7. Puschin, N.A., Stepanoviĉ, S., and Stajiĉ, V., Über die Legierungen des Galliums mit Zink, Cadmium, Quecksilber, Zinn, Blei, Wismut und Aluminium, Z. Anorg. Allg. Chem., 1932, vol. 209, no. 3, p. 329.

    Article  Google Scholar 

  8. Predel, B., Zustandsdiagramm und eigenschaften von Gallium-Zinn-Legierungen, J. Less-Common Met., 1964, vol. 7, no. 5, pp. 347–355.

    Article  CAS  Google Scholar 

  9. Trebuhov, A.A., Sarmurzina, R.K., and Sokolskii, D.V., Study of the physicochemical properties of the gallium-tin system, Zh. Fiz. Khim., 1985, no. 8, pp. 2065–2067.

  10. Brekharya, G.P., Effect of cooling rate onto supercooling of metals and alloys and structure formation, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Dnepropetrovsk: Dnepropetrovsk State Univ., 1976.

  11. Aleksandrov, V.D., Kinetika zarodysheobrazovaniya i massovoi kristallizatsii pereokhlazhdennykh rasplavov i amorfnykh sred (Kinetics of Nucleation and Mass Crystallization of Supercooled Liquids and Amorphous Media), Donetsk: Donbass, 2011.

  12. Aleksandrov, V.D., UA Patent 83721, 2008.

  13. Perepezko, J.H., Nucleation in undercooled liquids, Mater. Sci. Eng., 1984, vol. 65, no. 1, pp. 125–135.

    Article  CAS  Google Scholar 

  14. Šesták, J., Thermal Analysis: Thermophysical Properties of Solids: their Measurements and Theoretical Thermal Analysis, Amsterdam, New York: Elsevier Science, 1984.

    Google Scholar 

  15. GOST (State Standard) no. R532933–2009: Identification of Substances and Materials (Heating and Cooling Curves for TA, DTA, DSC, TGA), 2009.

  16. Aleksandrov, V.D. and Frolova, S.A., Effect of the overheating of the gallium melt on its supercooling during solidification, Russ. Metall. (Engl. Transl.), 2014, vol. 2014, no. 1, pp. 14–19. https://doi.org/10.1134/S0036029514010042

  17. Aleksandrov, V.D. and Frolova, S.A., The effect of thermal processing of the liquid phase on the crystallization of alloys in the Sn–Bi system, Rasplavy, 2003, no. 3, pp. 14–21.

  18. Aleksandrov, V.D. and Barannikov, V.D., Study of the influence of thermal history of tin and lead drops on their crystallization by cyclic thermal analysis, Khim. Fiz., 1998, vol. 17, no. 10, pp. 140–147.

    Google Scholar 

  19. Aleksandrov, V.D., Frolova, S.A., and Amerkhanova, Sh.K., Solidification of the eutectic Ga–Sn alloy, Russ. Metall. (Engl. Transl.), 2016, vol. 2016, no. 5, pp. 437–442. https://doi.org/10.1134/S0036029516050025

  20. Er-Guang Jia, Ai-Qing Wu, Li-Jun Guo, Liu, C.S., Wen-Jun Shan, and Zhen-Gang Zhu, Experimental evidence of the transformation from microheterogeneous to microhomogeneous states in Ga-Sn melts, Phys. Lett. A, 2007, vol. 364, no. 6, pp. 505–509. https://doi.org/10.1016/j.physleta.2006.12.048

    Article  CAS  Google Scholar 

  21. Zhao Xiaolin, Bian Xiufang, Wang Changchun, and Li Yunfang, The evolution of coordination structure in liquid GaSn alloy, Chin. J. Phys., 2018, vol. 56, no. 6, pp. 2684–2688. https://doi.org/10.1016/j.cjph.2018.10.025

    Article  CAS  Google Scholar 

  22. Stromberg, A.G. and Semchenko, D.P., Fizicheskaya khimiya (Physical Chemistry), Moscow: Vysshaya Shkola, 1973.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. D. Aleksandrov, A. P. Zozulia or S. A. Frolova.

Ethics declarations

The authors declare that the presented data do not contain any conflict of interest.

Additional information

Translated by I. Moshkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, V.D., Zozulia, A.P. & Frolova, S.A. Construction of Gallium–Tin Nonequilibrium State Diagram and Its Analysis. Russ. J. Non-ferrous Metals 61, 172–178 (2020). https://doi.org/10.3103/S1067821220020029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821220020029

Keywords:

Navigation