Skip to main content
Log in

Revisiting the structure of SiC–B4C–MedB2 systems and prospects for the development of composite ceramic materials based on them

  • Refractory, Ceramic, and Composite Materials
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The liquidus surface in SiC–B4C–MedB2 quasi-ternary eutectic systems (where MedB2 is CrB2, VB2, NbB2, TaB2, ZrB2, HfB2, and W2B5) is modeled in the approximation of the regular solution model based on the experimental data on bordering systems and individual compounds. The calculated and experimental data are compared. Regularities of the structure of phase diagrams of SiC–B4C–MedB2 systems are analyzed. It is noted that the diboride concentration appropriately decreases in the triple eutectic with an increase in its melting point. Correlation dependences between the eutectic temperature and melting point \({t_{eut}} = f\left( {t_m^{M{e^d}{B_2}}} \right)\) and formation enthalpy of diboride \({t_{eut}} = f\left( {\vartriangle H_f^{M{e^d}{B_2}}} \right)\) are constructed. The character of dependences is close to previously observed similar dependences in SiC–MedB2 and B4C–MedB2 bordering quasi-binary systems. It is concluded based on the analysis of the structure and parameters of analyzed systems that it is promising to develop a broad series of construction and functional ceramic materials and coatings fabricated by “free” sintering and by pulsed methods of heating and consolidation based on the considered systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thevenot, F., Boron carbide—a comprehensive review, J. Eur. Ceram. Soc., 1990, vol. 6, no. 4, pp. 205–225.

    Article  Google Scholar 

  2. Seifert, H.J. and Aldinger, F., Phase equilibria in the Si–B–C–N system, in: High Performance Non-Oxide Ceramics I, Berlin–Heidelberg: Springer, 2002, pp. 1–58.

    Google Scholar 

  3. Andrievski, R.A., Micro- and nanosized boron carbide: synthesis, structure and properties, Rus. Chem. Rev., 2012, vol. 81, no. 6, pp. 549–559.

    Article  Google Scholar 

  4. Ordanyan, S.S. and Unrod, V.I., Eutectics and their models, sintered composites, in systems of refractory materials, Refract. Ind. Ceram., 2005, vol. 46, no. 4, pp. 276–281.

    Article  Google Scholar 

  5. Ordanyan, S.S., Vikhman, S.V., Nesmelov, D.D., Danilovich, D.P., and Panteleev, I.B., Nonoxide highmelting point compounds as materials for extreme conditions, Adv. Sci. Technol., 2014, vol. 89, pp. 47–56.

    Article  Google Scholar 

  6. Sciti, D., Silvestroni, L., Medri, V., and Monteverde, F., Sintering and densification mechanisms of ultra-high temperature ceramics, in: Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, 2014, pp. 112–143.

    Google Scholar 

  7. Van Dijen, F.K. and Mayer, E., Liquid phase sintering of silicon carbide, J. Eur. Ceram. Soc., 1996, vol. 16, no. 4, pp. 413–420.

    Article  Google Scholar 

  8. Can, A., Herrmann, M., McLachlan, D.S., Sigalas, I., and Adler, J., Densification of liquid phase sintered silicon carbide, J. Eur. Ceram. Soc., 2006, vol. 26, no. 9, pp. 1707–1713.

    Article  Google Scholar 

  9. Gomez, E., Echeberria, J., Iturriza, I., and Castro, F., Liquid phase sintering of SiC with additions of Y2O3, Al2O3 and SiO2, J. Eur. Ceram. Soc., 2004, vol. 24, no. 9, pp. 2895–2903.

    Article  Google Scholar 

  10. Roy, T.K., Subramanian, C., and Suri, A.K., Pressureless sintering of boron carbide, Ceram. Int., 2006, vol. 32, no. 3, pp. 227–233.

    Article  Google Scholar 

  11. Kim, H.W., Koh, Y.H., and Kim, H.E., Densification and mechanical properties of B4C with Al2O3 as a sintering aid, J. Am. Ceram. Soc., 2000, vol. 83, no. 11, pp. 2863–2865.

    Article  Google Scholar 

  12. Dariel, M.P. and Frage, N., Reaction bonded boron carbide: recent developments, Adv. Appl. Ceram., 2012, vol. 111, nos. 5–6, pp. 301–310.

    Article  Google Scholar 

  13. Golubeva, N.A., Plyasunkova, L.A., Kelina, I.Y., Antonova, E.S., and Zhuravlev, A.A., Study of reaction- bonded boron carbide properties, Refr. Ind. Ceram., 2015, vol. 55, no. 5, pp. 414–418.

    Article  Google Scholar 

  14. Rehman, S.S., Ji, W., Khan, S.A., Fu, Z., and Zhang, F., Microstructure and mechanical properties of B4C densified by spark plasma sintering with Si as a sintering aid, Ceram. Int., 2015, vol. 41, no. 1, pp. 1903–1906.

    Article  Google Scholar 

  15. Kumazawa, T., Honda, T., Zhou, Y., Miyazaki, H., Hyuga, H., and Yoshizawa, Y.I., Pressureless sintering of boron carbide ceramics, J. Ceram. Soc. Jap., 2008, vol. 116, no. 1360, pp. 1319–1321.

    Article  Google Scholar 

  16. Rao, S.R., Padmanabhan, G., and Rao, P.V.C.S., Fabrication and tribological properties of Al–Si/B4C metal matrix composites, Int. J. Surface Eng. Interdiscipl. Mater. Sci., 2014, vol. 2, no. 1, pp. 74–84.

    Google Scholar 

  17. Landingham, R.L., US Patent 8530363, 2013.

    Google Scholar 

  18. Luo, Z., Song, Y., Zhang, S., and Miller, D.J., Interfacial microstructure in a B4C/Al composite fabricated by pressureless infiltration, Metal. Mater. Trans. A, 2012, vol. 43, no. 1, pp. 281–293.

    Article  Google Scholar 

  19. Schwetz, K.A. and Grellner, W., The influence of carbon on the microstructure and mechanical properties of sintered boron carbide, J. Less-Common Met., 1981, vol. 82, pp. 37–47.

    Article  Google Scholar 

  20. Suzuki, H., Hase, T., and Maruyama, T., Effect of carbon on sintering of boron carbide, J. Ceram. Soc. Jap., 1979, vol. 87 (1008), pp. 430–433.

    Google Scholar 

  21. Champagne, B. and Angers, R., Mechanical properties of hot-pressed B–B4C materials, J. Am. Ceram. Soc., 1979, vol. 62, nos. 3–4, pp. 149–153.

    Article  Google Scholar 

  22. Munhollon, T., Kuwelkar, K., and Haber R., Processing of boron rich boron carbide by boron doping, in: Advances in Ceramic Armor X: A Collection of Papers Presented at the 38th Int. Conf. on Advanced Ceramics and Composites, Wiley, 2015, pp. 119–127.

    Chapter  Google Scholar 

  23. Lee, H. and Speyer, R.F., Pressureless sintering of boron carbide, J. Am. Ceram. Soc., 2003, vol. 86, no. 9, pp. 1468–1473.

    Article  Google Scholar 

  24. Weaver, G.Q., US Patent 4320204, 1982.

  25. Yamada, S., Hirao, K., Yamauchi, Y., and Kanzaki, S., Sintering behavior of B4C–CrB2 ceramics, J. Mater. Sci. Lett., 2002, vol. 21, no. 18, pp. 1445–1447.

    Article  Google Scholar 

  26. Yamada, S., Hirao, K., Yamauchi, Y., and Kanzaki, S., Densification behaviour and mechanical properties of pressureless sintered B4C–CrB2 ceramics, J. Mater. Sci., 2002, vol. 37, no. 23, pp. 5007–5012.

    Article  Google Scholar 

  27. Yamada, S., Hirao, K., Yamauchi, Y., and Kanzaki, S., B4C–CrB2 composites with improved mechanical properties, J. Eur. Ceram. Soc., 2003, vol. 23, no. 3, pp. 561–565.

    Article  Google Scholar 

  28. Li, X., Jiang, D., Zhang, J., Lin, Q., Chen, Z., and Huang, Z., Pressureless sintering of boron carbide with Cr3C2 as sintering additive, J. Eur. Ceram. Soc., 2014, vol. 34, no. 5, pp. 1073–1081.

    Article  Google Scholar 

  29. Demirskyi, D. and Sakka, Y., In situ fabrication of B4C–NbB2 eutectic composites by spark-plasma sintering, J. Am. Ceram. Soc., 2014, vol. 97, no. 8, pp. 2376–2378.

    Article  Google Scholar 

  30. Demirskyi, D. and Sakka, Y., Fabrication, microstructure and properties of in situ synthesized B4C–NbB2 eutectic composites by spark plasma sintering, J. Ceram. Soc. Jap, 2015, vol. 123, no. 1433, pp. 33–37.

    Article  Google Scholar 

  31. Ordan’yan, S.S., Interaction regularities in B4C–MeIV–VIB2 systems, Inorg. Mater., 1993, no. 5, pp. 15–17.

    Google Scholar 

  32. Ordan’yan, S.S., Interaction regularities in SiC–MeIV–VIB2 systems, Zh. Prikl. Khim., 1993, vol. 66, no. 11, pp. 2439–2444.

    Google Scholar 

  33. Ordan’yan, S.S., Vikhman, S.V., and Kuznetsov, M.N., Structure of the polythermal SiC–W2B5 join of the B–C–Si–V system, Ogneupory Tekh. Keram., 2004, vol. 12, pp. 2–4.

    Google Scholar 

  34. Udalov, Yu.P., Valova, E.E., and Ordan’yan, S.S., Preparation and abrasive properties of eutectic compositions in the B4C–SiC–TiB2 system, Refractories, 1995, vol. 36, no. 8, pp. 233–234.

    Article  Google Scholar 

  35. Li, W.J., Tu, R., and Goto, T., Preparation of directionally solidified B4C–TiB2–SiC ternary eutectic composites by a floating zone method and their properties, Mater. Trans., 2005, vol. 46, no. 9, pp. 2067–2072.

    Article  Google Scholar 

  36. Grigor’ev, O.N., Gogotsi, G.A., Gogotsi, Y.G., Subbotin, V.I., and Brodnikovskii, N.P., Synthesis and properties of ceramics in the SiC–B4C–MeB2 system, Powder Metall. Metal Ceram., 2000, vol. 39, nos. 5–6, pp. 239–250.

    Article  Google Scholar 

  37. Bogomol, Yu.I., Loboda, P.I., and Holovenko, Ya.B., Structure and properties of quasi-ternary directionally reinforced composites of B4C–TiB2–SiC system, Metaloznav. Obrob. Metal., 2015, vol. 2, pp. 37–42.

    Google Scholar 

  38. Chalgin, A.V., Vikhman, S.V., Ordan’yan, S.S., Danilovich, D.P., and Nechaeva, M.V., Principles of technology and mechanical properties of structural ceramics based on the ternary system SiC–B4C–CrB2, in: MRS Proceedings, Cambridge Univ., 2015, vol. 1765, imrc2014 s4a-o015.

    Google Scholar 

  39. Tu, R., Li, N., Li, Q., Zhang, S., Zhang, L., and Goto, T., Microstructure and mechanical properties of B4C–HfB2–SiC ternary eutectic composites prepared by arc melting, J. Eur. Ceram. Soc., 2016, vol. 36, no. 4, pp. 959–966.

    Article  Google Scholar 

  40. Tu, R., Li, N., Li, Q.Z., Zhang, S., Goto, T., and Zhang, L.M., Preparation of B4C–ZrB2–SiC ternary eutectic composites by arc melting and their properties, Mater. Res. Innov., 2015, vol. 19, supl. 10, pp. S10-26–S10-29.

    Google Scholar 

  41. Fahrenholtz, W.G., Neuman, E.W., Brown-Shaklee, H.J., and Hilmas, G.E., Superhard boride–carbide particulate composites, J. Am. Ceram. Soc., 2010, vol. 93, no. 11, pp. 3580–3583.

    Article  Google Scholar 

  42. Udalov, Y. and Morozov, Y., The program of calculation of fusibility curves of triple systems DIATRIS 1.2 (Algorithm, interface, and technical application), in: 6th Int. School-Conf. “Phase diagrams in materials science”, Kiev, 2001, pp. 58–59.

    Google Scholar 

  43. Ordan’yan, S.S. and Gudovskikh, P.S., Evolution of the Al2O3–ZrO2(Y2O3) eutectic fibers structure, Zh. Prikl. Khim., 1995, vol. 68, no. 12, pp. 1955–1959.

    Google Scholar 

  44. Gudovskikh, P.S. and Pigunova, D.N., Ceramics based on cubic ZrO2 (Y2O3) with addition of a fused Al2O3–ZrO2(Y2O3) eutectic, Refract. Ind. Ceram., 2004, vol. 45, no. 1, pp. 1–2.

    Article  Google Scholar 

  45. Zhidkova, T.V., Danilovich, D.P., and Ordanyan, S.S., Joint synthesis of heterogeneous powders in the B4C–SiC–TiB2 system, in: Book of Abstracts of the 14th Int. Conf. of European Ceramic Society, Toledo, 2015, ID: 01800.

    Google Scholar 

  46. Zhidkova, T.V., Danilovich, D.P., and Ordan’yan, S.S., Peculiarities of joint carbothermal synthesis of powders in the SiC–B4C–TiB2 system, in: Vtoraya Vserossiiskaya konferentsiya s mezhdunarodnym uchastiem “Innovatsii v materialovedenii” (Second All-Russian Conf. with Int. Participation “Innovations in Materials Science), Moscow, 2015, 293–294.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Ordan’yan.

Additional information

Original Russian Text © S.S. Ordan’yan, D.D. Nesmelov, D.P. Danilovich, Yu.P. Udalov, 2016, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya, 2016, No. 4, pp. 41–50.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ordan’yan, S.S., Nesmelov, D.D., Danilovich, D.P. et al. Revisiting the structure of SiC–B4C–MedB2 systems and prospects for the development of composite ceramic materials based on them. Russ. J. Non-ferrous Metals 58, 545–551 (2017). https://doi.org/10.3103/S1067821217050133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821217050133

Keywords

Navigation