Skip to main content
Log in

Effect of the Rheological Properties of a Dispersed System on the Polishing Indicators of Optical Glass and Glass Ceramics

  • INVESTIGATION OF MACHINING PROCESSES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The study of the regularities of the polishing of optical glass and glass ceramics showed that the coefficient of surface tension, the coefficient of dynamic viscosity of the polishing dispersed system, and the contact angles of the surfaces of the treated surface and lapping tool affect the thickness of the gap between them and, accordingly, the productivity of removing the processed material and the roughness parameters of the treated surfaces. The energy transfer is directly related to the coefficient of volumetric wear, which determines the productivity of polishing. The validity of the ratio between the coefficients of volumetric wear and thermal diffusivity, depending on the specific heat capacity, transfer energy, and temperature, is confirmed. An increase in the thickness of the gap between the treated surface and the lapping tool leads to a decrease in the most probable size of sludge particles and an improvement in the roughness of polished surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Filatov, Yu.D., Sidorko, V.I., Filatov, O.Yu., and Kovalev, S.V., Fizichni zasadi formoutvorennya pretsiziinikh poverkhon’ pid chas mekhanichnoi obrobki nemetalevikh materialiv: Monografiya (Physical Principles of Formation of Precise Surfaces during Mechanical Processing of Nonmetal Materials: Monograph), Kyiv: Naukova Dumka, 2017.

  2. Filatov, Yu.D., Modeling and experimental study of surfaces optoelectronic elements from crystal materials in polishing, in Simulation and Experiments of Material-Oriented Ultra-Precision Machining, Springer Tracts in Mechanical Engineering, Zhang, J., et al., Eds., New York: Springer-Verlag, 2019, pp. 129–165.

    Google Scholar 

  3. Filatov, Yu.D., Polishing of precision surfaces of optoelectronic device elements made of glass, sitall, and optical and semiconductor crystals: a review, J. Superhard Mater., 2020, vol. 42, no. 1, pp. 30–48.

    Article  Google Scholar 

  4. Suratwala, T.I., Materials Science and Technology of Optical Fabrication, Hoboken, NJ: Wiley, 2018.

    Book  Google Scholar 

  5. Yao, J., Han, H., Hou, Y., Gong, E., and Yin, W., A method of calculating the interaction energy between particles in minerals flotation, Math. Probl. Eng., 2016, vol. 2016, art. ID 8430745.

    Google Scholar 

  6. Chen, G., Ni, Z., Bai, Y., Li, Q., and Zhao, Y., The role of interactions between abrasive particles and the substrate surface in chemical-mechanical planarization of Si-face 6H–SiC, RSC Adv., 2017, vol. 7, pp. 16938–16952.

    Article  CAS  Google Scholar 

  7. Filatov, Yu.D., Filatov, O.Yu., Monteil, G., Heisel, U., and Storchak, M.G., Bound-abrasive grinding and polishing of surfaces of optical materials, Proc. SPIE, 2010, vol. 7786, pp. 77861–77869.

    Google Scholar 

  8. Filatov, O.Yu., Sidorko, V.I., Kovalev, S.V., Filatov, Yu.D., and Vetrov, A.G., Material removal rate in polishing anisotropic monocrystalline materials for optoelectronics, J. Superhard Mater., 2016, vol. 38, no. 2, pp. 123–131.

    Article  Google Scholar 

  9. Filatov, Yu.D., Polishing of aluminosilicate materials with bound-abrasive tools, J. Superhard Mater., 2001, vol. 23, no. 3, pp. 32–42.

    Google Scholar 

  10. Filatov, Yu.D., Vetrov, A.G., Sidorko, V.I., Filatov, A.Yu., and Kovalev, S.V., A mechanism of diamond-abrasive finishing of monocrystalline silicon carbide, J. Superhard Mater., 2013, vol. 35, no. 5, pp. 303–308.

    Article  Google Scholar 

  11. Filatov, Yu.D., Vetrov, A.G., Sidorko, V.I., Filatov, O.Yu., Kovalev, S.V., Kurilovich, V.D., Danil’chenko, M.A., Prikhna, T.A., Borimskii, A.I., Katsai, A.M., and Poltoratskii, V.G., Polishing of optoelectronic components made of monocrystalline silicon carbide, J. Superhard Mater., 2015, vol. 37, no. 1, pp. 48–56.

    Article  Google Scholar 

  12. Filatov, Yu.D., Filatov, A.Yu., Syrota, O.O., Yashchuk, V. P., Monteil, G., Heisel, U., and Storchak, M., The influence of tool wear particles scattering in the contact zone on the workpiece surface microprofile formation in polishing quartz, J. Superhard Mater., 2010, vol. 32, no. 6, pp. 415–422.

    Article  Google Scholar 

  13. Derjaguin, B.V., Abrikosova, I.I., and Lifshitz, E.M., Molecular attraction of condensed bodies, Phys.-Usp., 2015, vol. 58, no. 9, pp. 906–924.

    Article  CAS  Google Scholar 

  14. Sato, N., Aoyama, Y., Yamanaka, J., Toyotama, A., and Okuzono, T., Particle adsorption on hydrogel surfaces in aqueous media due to van der Waals attraction, Sci. Rep., 2017, vol. 7, no. 6099, pp. 1–10.

    Article  Google Scholar 

  15. Lin, G., Guo, D., Xie, G., Jia, Q., and Pan, G., In situ observation of colloidal particle behavior between two planar surfaces, Colloids Surf., A, 2015, vol. 482, pp. 656–661.

    Article  CAS  Google Scholar 

  16. Filatov, Yu.D., Interaction between debris particles and polishing powder wear particles in polishing optoelectronic components, J. Superhard Mater., 2018, vol. 40, no. 4, pp. 282–289.

    Article  Google Scholar 

  17. Rudyak, V.Ya., Analysis of viscosity of nanofluids, Vestn. Novosib. Gos. Univ., Ser.: Fiz., 2015, vol. 10, no. 1, pp. 5–22.

    Google Scholar 

  18. Serebryakova, M.A., Thermal conductivity and viscosity of nanofluids based on 10% water solution in ethylene glycol and Al2O3 nanoparticles, Materialy Vserossiiskoi shkoly-konferentsii s mezhdunarodnym uchastiem “Aktual’nye voprosy teplofiziki i fizicheskoi gidogazodinamiki,” Tezisy dokladov (Proc. All-Russ. School-Conf. with Int. Participation “Urgent Problems in Thermal Physics and Physical Fluid Gas Dynamics,” Abstracts of Papers), Novosibirsk: Inst. Teplofiz., Sib. Otd., Ross. Akad. Nauk, 2014, pp. 150–151.

    Google Scholar 

  19. Poddenezhnyi, E.N., Boiko, A.A., and Pakhovchishin, S.V., Rheology of composite silica-containing colloidal systems and modeling of their destabilization processes, Vestn. Gomel. Gos. Tekh. Univ. im. P.O. Sukhogo, 2003, no. 3, pp. 20–27.

  20. Egorova, E.V. and Polenov, Yu.V., Poverkhnostnye yavleniya i dispersnye sistemy: Uchebnoe posobie (Surface Phenomena and Disperse Systems: Manual), Ivanovo: Ivanovsk. Gos. Khim.-Tekhnol. Univ., 2008.

  21. Grodskii, A.S., Kienskaya, K.I., Gavrilova, N.N., and Nazarov, V.V., Osnovnye ponyatiya i uravneniya kolloidnoi khimii (General Definitions and Equations in Colloidal Chemistry), Moscow: Ross. Khim. Tekh. Univ. im. D.I. Mendeleeva, 2013.

  22. Nemtseva, M.P. and Filippov, D.V., Reologicheskie svoistva kolloidnykh sistem: Metodicheskie ukazaniya k laboratornomu praktikumu po kursam “Poverkhnostnye yavleniya i dispersnye sistemy” i “Kolloidnaya khimiya” (Rheological Properties of Colloid Systems: Practical Guide for Courses “Surface Phenomena and Disperse Systems” and “Colloidal Chemistry”), Ulitin, M.V., Ed., Ivanovo: Ivanovsk. Gos. Khim.-Tekhnol. Univ., 2006.

    Google Scholar 

  23. Klyndyuk, A.I., Poverkhnostnye yavleniya i dispersnye sistemy: Uchebnoe sosobie dlya studnetov khimiko-tekhnologicheskikh spetsial’nostei (Surface Phenomena and Disperse Systems: Manual for Students of Chemical-Technological Specialties), Minsk: Bel. Gos. Tekh. Univ., 2011.

  24. Batsanov, S.S., Strukturnaya Khimiya. Fakty i zavisimosti (Structural Chemistry: Facts and Dependences), Moscow: Dialog-MGU, 2000.

  25. Kuvshinskii, M.V., Oreshkin, S.I., Popov, S.M., Rudenko, V.N., Yudin, I.S., Azarova, V.V., and Blagov, S.V., Tests of cryogenic Fabry–Perot cavity with mirrors on different substrates, Appl. Sci., 2019, vol. 9, no. 2, art. ID 230.

    Article  CAS  Google Scholar 

  26. Puzanova, E.G., Martyukhova, D.A., Sigaev, V.N., Stroganova, E.E., and Savinkov, V.I., Ion-exchange hardening of optical sitalls of the lithium-aluminum silicate system, Usp. Khim. Khim. Tekhnol., 2016, vol. 30, no. 7, pp. 93–95.

    Google Scholar 

  27. Besogonov, I.I. and Skvortsova, I.N., Reduction of the surface roughness of the sitall substrate to nanoscale size, Izv. Vyssh. Uchebn. Zaved., Priborostr., 2009, vol. 52, no. 9, pp. 73–76.

    Google Scholar 

  28. Filatov, Yu.D., Diamond polishing of crystalline materials for optoelectronics, J. Superhard Mater., 2017, vol. 39, no. 6, pp. 427–433.

    Article  Google Scholar 

  29. Filatov, O.Yu., Sidorko, V.I., Kovalev, S.V., Filatov, Y.D., and Vetrov, A.G., Polishing substrates of single crystal silicon carbide and sapphire for optoelectronics, Funct. Mater., 2016, vol. 23, no. 1, pp. 104–110.

    Article  CAS  Google Scholar 

  30. Filatov, Yu.D., Sidorko, V.I., Filatov, A.Yu., Yashuk, V.P., Heisel, W., and Storchak, M., Surface quality control in diamond abrasive finishing, Proc. SPIE, 2009, vol. 7389, art. ID 73892O.

  31. Filatov, Yu.D., Sidorko, V.I., Filatov, O.Yu., Kovalev, S.V., Heisel, U., and Storchak, M., Surface roughness in diamond abrasive finishing, J. Superhard Mater., 2009, vol. 31, no. 3, pp. 191–195.

    Article  Google Scholar 

  32. Filatov, Yu.D., Yashchuk, V.P., Filatov, A.Yu., Heisel, U., Storchak, M., and Monteil, G., Assessment of surface roughness and reflectance of nonmetallic products upon diamond abrasive finishing, J. Superhard Mater., 2009, vol. 31, no. 5, pp. 338–346.

    Article  Google Scholar 

  33. Filatov, Yu.D., Filatov, O.Y., Heisel, U., Storchak, M.G., and Monteil, G., In situ control of roughness of processed surfaces by reflectometric method, Proc. SPIE, 2010, vol. 7718, art. ID 77181J.

  34. Filatov, Y.D., Filatov, O.Y., Monteil, G., Heisel, U., and Storchak, M.G., Bound-abrasive grinding and polishing of surfaces of optical materials, Opt. Eng., 2011, vol. 50, no. 6, art. ID 063401–7.

    Article  Google Scholar 

  35. Filatov, O.Yu., Sidorko, V.I., Kovalev, S.V., Filatov, Yu.D., and Vetrov, A.G., Polished surface roughness of optoelectronic components made of monocrystalline materials, J. Superhard Mater., 2016, vol. 38, no. 3, pp. 197–206.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. D. Filatov.

Additional information

Translated by O. Zhukova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filatov, Y.D., Sidorko, V.I., Kovalev, S.V. et al. Effect of the Rheological Properties of a Dispersed System on the Polishing Indicators of Optical Glass and Glass Ceramics. J. Superhard Mater. 43, 65–73 (2021). https://doi.org/10.3103/S1063457621010032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457621010032

Keywords:

Navigation