Skip to main content
Log in

Theoretical and Experimental Evidence for a Post-Cotunnite Phase Transition in Hafnia at High Pressures

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

Using first-principles density-functional theory (DFT) computations, we have predicted a new post-cotunnite (OII) phase of hafnia (HfO2) at high pressures. Our computations, using the generalized gradient approximation (GGA), predict a phase transition from OII to a Fe2P-type structure at ~ 120 GPa (~ 140 GPa) with a slight volume collapse at the transition pressure of ~ 0.2% (~ 0.1%) between the two phases using the second- (third-) order Birch-Murnaghan equation of state, respectively. The prediction of the new phase is consistent with recent experiments and computations performed on similar dioxides titania (TiO2) and zirconia (ZrO2) at extreme pressure-temperature (p-T) conditions. Importantly, our theoretical prediction for the OII → Fe2P transition in HfO2 is experimentally supported by the re-analysis of X-ray diffraction patterns of HfO2 at extreme pressure-temperature conditions. Additionally, the equation of state and hardness of the predicted phase have been computed and show that Fe2P-type phase while less compressible than the OII phase is nearly identical in hardness, indicating that none of the HfO2 phases qualify as superhard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khosman, J.M., Khan, A., and Kordesh, M.E., Amorphous hafnium oxide thin films for antireflection optical coatings, Surf. Coatings Technol., 2008, vol. 202, pp. 2500–2502.

    Article  CAS  Google Scholar 

  2. Torchio, P., Gatto, A., Alvisi, M., et al., High-reflectivity HfO2/SiO2 ultraviolet mirrors, Appl. Opt., 2002, vol. 41, pp. 3256–3261.

    Article  CAS  PubMed  Google Scholar 

  3. Choi, J.H., Mao, Y., and Chang, J.P., Development of hafnium based high-k materials—A review, Mater. Sci. Eng. R Reports, 2011, pp. 97–136.

    Google Scholar 

  4. Zhu, H., Tang, C., Fonseca LRC, et al., Recent progress in ab initio simulations of hafnia-based gate stacks, J. Mater. Sci., 2012, vol. 47, pp. 7399–7416.

    Article  CAS  Google Scholar 

  5. Robertson, J. and Wallace, R.M., High-K materials and metal gates for CMOS applications, Mater. Sci. Eng. R, 2015, vol. 88, pp. 1–41.

    Article  Google Scholar 

  6. Bersuker, G., Gilmer, D.C., Veksler, D., et al., Metal oxide resistive memory switching mechanism based on Conductive filament properties, J. Appl. Phys., 2011, vol. 110, no. 12, art. 124518.

    Article  CAS  Google Scholar 

  7. Privitera, S., Bersuker, G., Butcher, B., et al., Microscopy study at the conductive filament in HfO2 resistive switching memory devices, Microelectron. Eng., 2013, vol. 109, pp. 75–78.

    Article  CAS  Google Scholar 

  8. Lin, KL, Hou, TH, Shieh, J., et al., Electrode dependence of filament formation in HfO2 resistive-switching memory, J. Appl. Phys., 2011, vol. 109, art. 084104.

    Article  CAS  Google Scholar 

  9. Al-Khatatbeh, Y., Lee, KKM., and Kiefer, B., Phase diagram up to 105 GPa and mechanical strength of HfO2, Phys. Rev. B., 2010, vol. 82, art. 144106.

    Article  CAS  Google Scholar 

  10. Haines, J., Leger, J.M., Hull, S., et al., Characterization of the cotunnite-type phases of zirconia and hafnia by neutron diffraction and Raman spectroscopy, J. Am. Ceram. Soc., 1997, vol. 80, pp. 1910–1914.

    Article  CAS  Google Scholar 

  11. Desgreniers, S. and Lagarec, K., High-density ZrO2 and HfO2: Crystalline structures and equation of state, Phys.Rev. B., 1999, vol. 59, pp. 8467–8472.

    Article  CAS  Google Scholar 

  12. Adams, D.M., Leonard, S., Russell, D.R., et al., X-ray diffraction study of hafnia under high pressure using synchrotron radiation, J. Phys. Chem. Solids, 1991, vol. 52, pp. 1181–1186.

    Article  CAS  Google Scholar 

  13. Leger, J.M., Haines, J., and Blanzat, B., Materials potentially harder than diamond: Quenchable high-pressure phases of transition metal dioxides, J. Mater. Sci. Lett., 1994, vol. 13, pp. 1688–1690.

    Article  CAS  Google Scholar 

  14. Jayaraman, A., Diamond anvil cell and high-pressure physical investigations, Rev. Mod. Phys., 1983, vol. 55, pp. 65–108.

    Article  CAS  Google Scholar 

  15. Ohtaka, O., Yamanaka, T., Kume, S., et al., Synthesis and X-ray structural analysis by the Rietveld method of orthorhombic hafnia, J. Ceram. Soc. Japan., 1991, vol. 99, pp. 826–827.

    Article  CAS  Google Scholar 

  16. Ohtaka, O., Yamanaka, T., Kume, S., et al., Structural analysis of orthorhombic hafnia by neutron powder diffraction, J. Am. Ceram. Soc., 1995, vol. 78, pp. 233–237.

    Article  CAS  Google Scholar 

  17. Arashi, H., Yagi, T., Akimoto, S., et al., New high-pressure phase of ZeO2 above 35 GPa, Phys. Rev., B., 1990, vol. 41, pp. 4309–4313.

    Article  CAS  Google Scholar 

  18. Leger, J.M., Tomaszewski, P.E., Atouf, A., et al., Pressure-induced phase transitions and volume changes in HfO2 up to 50 GPa, Phys. Rev. B., 1993, vol. 48, pp. 93–98.

    Article  CAS  Google Scholar 

  19. Mandal, G., Jana, R, Saha, P., et al., Study of structural phase transition of HfO2 at high pressure, Mater. Today Proc., 2016, vol. 3, pp. 2997–3001.

    Article  Google Scholar 

  20. Mandal, G. and Das, P., The pressure induced structural phase transition of HfO2, AIP Conf. Proc., 2017, art. 30014.

    Google Scholar 

  21. Terki, R., Bertrand, G., Aourag, H., et al., Cubic-tetragonal phase transition in HfO2 from computational study, Mater. Lett., 2008, vol. 62, pp. 1484–1486.

    Article  CAS  Google Scholar 

  22. Jaffe, J.E., Bachorz, R.A., and Gutowski, M., Low-temperature polymorphs of ZrO2 and HfO2: A density-functional theory study, Phys. Rev. B., 2005, vol. 72, art. 144107.

    Article  CAS  Google Scholar 

  23. Lowther, J.E., Dewhurst, J.K., Leger, J.M., et al., Relative stability of ZrO2 and HfO2 structural phases, Phys. Rev.B., 1999, vol. 60, pp. 14485–14488.

    Article  CAS  Google Scholar 

  24. Dewhurst, J. E. and Lowther, J.E., Highly coordinated metal dioxides in the cotunnite structure, Phys. Rev. B, 2001, vol. 64, art. 14104.

    Article  CAS  Google Scholar 

  25. Kang, J., Lee, E-C., and Chang, K.J., First-principles study of structural phase transformation of hafnia under pressure, Phys. Rev. B, 2003, vol. 68, art. 54106.

    Article  CAS  Google Scholar 

  26. Ohtaka, O., Fukui, H., Kunisada, T., et al., Phase relations and volume changes of hafnia under high pressure and high temperature., J. Am. Ceram. Soc., 2001, vol. 84, pp. 1369–1373.

    Article  CAS  Google Scholar 

  27. Al-Khatatbeh, Y., Lee, KKM, and Kiefer, B., Phase relations and hardness trends of ZrO2 phases at high pressure, Phys. Rev. B, 2010, vol. 81, art. 214102.

    Article  CAS  Google Scholar 

  28. Ohtaka, O., Andrault, D., Bouvier, P., et al., Phase relations and equation of state of ZrO2 to 100 GPa, J. Appl. Crystallogr., 2005, vol. 38, pp. 727–733.

    Article  CAS  Google Scholar 

  29. Ohtaka, O., Fukui, H., Funakoshi, K., et al., Phase relations and EOS of ZrO2 under high-temperature and high-pressure, High Press. Res., 2002, vol. 22, pp. 221–226.

    Article  Google Scholar 

  30. Ohtaka, O., Fukui, H., Kunisada, T., et al., Phase relations and EOS of ZrO2 under high temperature and high pressure, Phys. Rev. B, 2001, vol. 63, art. 174108.

    Article  CAS  Google Scholar 

  31. Fadda, G., Colombo, L., and Zanzotto, G., First-principles study of structural and elastic properties of zirconia, Phys. Rev. B., 2009, vol. 79, art. 214102.

    Article  CAS  Google Scholar 

  32. Al-Khatatbeh, Y., Lee, KKM, and Kiefer, B., High pressure behavior of TiO2 as determined by experiment and theory, Phys. Rev. B., 2009, vol. 79, art. 13411.

  33. Dubrovinskaia, N.A., Dubrovinsky, L.S., Ahuja, R., et al., Experimental and theoretical identification of a new high-pressure TiO2 polymorph, Phys. Rev. Lett., 2001, vol. 87, art. 275501.

    Article  CAS  PubMed  Google Scholar 

  34. Dubrovinsky, L.S., Dubrovinskaia, N.A., Swamy, V., et al., The hardest known oxide, Nature, 2001, vol. 410, pp. 653–654.

    Article  CAS  PubMed  Google Scholar 

  35. Nishio-Hamane, D., Shimizu, A., Nakahira, R., et al., The stability and equation of state for the cotunnite phase of TiO2 up to 70 GPa, Phys. Chem. Miner., 2009, vol. 37, pp. 129–136.

    Article  CAS  Google Scholar 

  36. Mattesini, M., de Almeida, J.S., Dubrovinsky, L. et al., High-pressure and high-temperature synthesis of the cubic TiO2 polymorph, Phys. Rev. B., 2004, vol. 70, art. 212101.

    Article  CAS  Google Scholar 

  37. Caravaca, M.A., Mino, J.C., Pérez, V.J., et al., Ab initio study of the elastic properties of single and polycrystal TiO2, ZrO2 and HfO2 in the cotunnite structure, J. Phys. Condens. Mater., 2009, vol. 21, art. 15501.

    Article  CAS  Google Scholar 

  38. Muscat, J., Swamy, V., and Harrison N.M., First-principles calculations of the phase stability of TiO2, Phys. Rev. B., 2002, vol. 65, art. 224112.

    Article  CAS  Google Scholar 

  39. Dekura, H., Tsuchiya, T., Kuwayama, Y., et al., Theoretical and experimental evidence for a new post-cotunnite phase of titanium dioxide with significant optical absorption, Phys. Rev. Lett., 2011, vol. 107, art. 45701.

    Article  CAS  Google Scholar 

  40. Nishio-Namane, D., Dekura, H., Seto, Y, et al., Theoretical and experimental evidence for the new post-cotunnite phase transition in zirconia at high pressure, Phys. Chem. Miner., 2015, vol. 42, pp. 385–392.

    Article  CAS  Google Scholar 

  41. Meng, X., Wang, L., Liu, D., et al., Discovery of Fe2P-type Ti(Zr/Hf)206 photocatalysts toward water splitting, Chem. Mater., 2016, vol. 28, pp. 1335–1342.

    Article  CAS  Google Scholar 

  42. Hohenberg, P. and Kohn, W., Inhomogeneous electron gas, Phys. Rev., 1964, vol. 136, pp. B864–B871.

    Article  Google Scholar 

  43. Kresse, G. and Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 1999, vol. 59, pp. 1758–1775.

    Article  CAS  Google Scholar 

  44. Blochl, P.E., Projector augmented-wave method, Phys. Rev. B, 1994, vol. 50, art. 17953.

    Article  CAS  Google Scholar 

  45. Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, vol. 77, pp. 3865–3868.

    Article  CAS  Google Scholar 

  46. Kresse, G. and Furthmuller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 1996, vol. 6, pp. 15–50.

    Article  CAS  Google Scholar 

  47. Kresse, G. and Furthmuller, J., Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set, Phys. Rev. B., 1996, vol. 54, pp. 11169–11186.

    Article  CAS  Google Scholar 

  48. Kresse, G. and Hafner, J., Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements, J. Phys. Condens. Matter, 1994, vol. 6, art. 8245.

    Article  CAS  Google Scholar 

  49. Kresse, G. and Hafner, J., Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B, 1993, vol. 48, pp. 13115–13118.

    Article  CAS  Google Scholar 

  50. Monkhorst, H.J. and Pack, J.D., Special points for Brillouin-zone integration, Phys. Rev. B, 1976, vol. 13, pp. 5188–5192.

    Article  Google Scholar 

  51. Wang, L.-L. and Johnson, D.D., Removing critical errors for DFT applications to transition-metal nanoclusters: Correct ground-state structures of Ru clusters, J. Phys. Chem. B., 2005, vol. 109, pp. 23113–23117.

    Article  CAS  PubMed  Google Scholar 

  52. Birch, F., Elasticity and constitution of the Earth’s interior, J. Geophys. Res., 1952, vol. 57, pp. 227–234.

    Article  CAS  Google Scholar 

  53. Simunek, A. and Vackar, J., Hardness of covalent and ionic crystals: First-principle calculations, Phys. Rev. Lett, 2006, vol. 96, art. 85501.

    Article  CAS  Google Scholar 

  54. Wang, Y., Panzik, J.E., Kiefer, B., et al., Crystal structure of graphite under room-temperature compression and decompression, Sci. Rep., 2012, vol. 2, art. 520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Heinz, D.L., Thermal pressure in the laser-heated diamond anvil cell, Geophys. Res. Lett., 1990, vol. 17, pp. 1161–1164.

    Article  Google Scholar 

  56. Goncharov, A.F., Prakapenka, V.B., Struzhkin, V.V., et al., X-ray diffraction in the pulsed laser heated diamond anvil cell, Rev. Sci. Instrum., 2010, vol. 81, art. 113902.

    Article  CAS  PubMed  Google Scholar 

  57. Andrault, D., Fiquet, G., Itie, J.P., et al., Thermal pressure in the laser-heated diamond-anvil cell: An X-ray diffraction study, Eur. J. Mineral., 1998, vol. 10, pp. 931–940.

    Article  CAS  Google Scholar 

  58. Al-Khatatbeh, Y. and Lee, KKM., From superhard to hard: A review of transition metal dioxides TiO2, ZrO2, and HfO2 hardness, J. Superhard Mater., 2014, vol. 36, pp. 231–245.

    Article  Google Scholar 

  59. Ding, Y., Chen, M., and Wu, W., Mechanical properties, hardness and electronic structures of new post-contunnite phase (Fe2P-type) of TiO2, Phys. B. Condens. Matter., 2014, vol. 433, pp. 48–54.

    Article  CAS  Google Scholar 

  60. Lyakhov, A.O. and Oganov, A.R., Evolutionary of search for superhard materials: Methodology and applications to forms of carbon and TiO2. Phys. Rev. B, 2011, vol. 84, art. 92103.

    Article  CAS  Google Scholar 

  61. Simunek, A., How to estimate hardness of crystals on a pocket calculator, Phys. Rev. B., 2007, vol. 75, art. 172108.

    Article  CAS  Google Scholar 

  62. Momma, K. and Izumi, F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 2011, vol. 44, pp. 1272–1276.

    Article  CAS  Google Scholar 

  63. Haines, J., Leger, J.M., and Atouf, A., Crystal structure and equation of state of cotunnite-type zirconia, J. Am.Ceram. Soc., 1995, vol. 78, pp. 445–448.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahya Al-Khatatbeh.

Additional information

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Khatatbeh, Y., Tarawneh, K., Al-Taani, H. et al. Theoretical and Experimental Evidence for a Post-Cotunnite Phase Transition in Hafnia at High Pressures. J. Superhard Mater. 40, 374–383 (2018). https://doi.org/10.3103/S1063457618060023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457618060023

Keywords

Navigation