Skip to main content

Advertisement

Log in

Theoretical and experimental evidence for the post-cotunnite phase transition in zirconia at high pressure

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

A post-cotunnite phase transition in zirconia (ZrO2) at high pressure was investigated by synchrotron X-ray diffraction measurements and ab initio calculations based on density functional theory. This study successfully demonstrated a cotunnite- to Fe2P-type phase transition. Static enthalpy difference (ΔH) calculations predicted the appearance of the Fe2P phase at 124 GPa (LDA) and 143 GPa (GGA), and experimental trials demonstrated the coexistence of the Fe2P and cotunnite phases at 175 GPa after heating to 3,000 K. Both phases were quenchable to ambient conditions. The volume of the Fe2P phase was slightly less (~Δ 0.6 %) than that of the cotunnite phase over the experimental pressure range, indicating that the Fe2P phase is the higher pressure phase. The coexistence of both phases in this study may be attributed to the slow kinetics of the phase transition resulting from the close structural relationship of the two phases. An Fe2P-type structural model can be derived by applying a simple operation to the cotunnite-type structure, consisting of a 1/2 shift of several zirconium arrangements parallel to the b-axis of the cotunnite-type unit cell. It is concluded that the high-pressure cotunnite-to-Fe2P phase transition may be a common trend in many dioxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal propertied from density-functional perturbation theory. Rev Mod Phys 73:515–562

    Article  Google Scholar 

  • Block S, da Jornada JAH, Piermarini GJ (1985) Pressure–temperature phase diagram of zirconia. J Am Ceram Soc 68:497–499

    Article  Google Scholar 

  • Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569

    Article  Google Scholar 

  • Dekura H, Tsuchiya T, Tsuchiya J (2011a) First-principles prediction of post-pyrite phase transitions in germanium dioxide. Phys Rev B 83:134114

    Article  Google Scholar 

  • Dekura H, Tsuchiya T, Kuwayama Y, Tsuchiya J (2011b) Theoretical and experimental evidence for a new post-cotunnite phase of titanium dioxide with significant optical absorption. Phys Rev Lett 107:045701

    Article  Google Scholar 

  • Desgreniers S, Lagarec K (1999) High-density ZrO2 and HfO2: crystalline structures and equation of state. Phys Rev B 59:8467–8472

    Article  Google Scholar 

  • Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502

    Article  Google Scholar 

  • Griffiths GIG, Needs RJ, Pickard CJ (2009) Post-cotunnite phase of TeO2 obtained from first-principles density-functional theory methods with random-structure searching. Phys Rev B 80:184115

    Article  Google Scholar 

  • Haines J, Léger JM, Hull S, Petitet JP, Pereira AS, Perottoni CA, Jornada JAH (1997) Characterization of the cotunnite-type phase of zirconia and hafnia by neutron diffraction and raman spectroscopy. J Am Ceram Soc 80:1910–1914

    Article  Google Scholar 

  • Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:864–871

    Article  Google Scholar 

  • Holmes NC, Moriarty JA, Gathers GR, Nellis WJ (1989) The equation of state of platinum to 660 GPa (6.6 Mbar). J Appl Phys 66:2962–2967

    Article  Google Scholar 

  • Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlations effect. Phys Rev A 140:1133–1138

    Article  Google Scholar 

  • Léger JM, Haines J, Atouf A (1995) High-pressure transitions to a postcotunnite phase in ionic AX2 compounds. Phys Rev B 51:3902–3905

    Article  Google Scholar 

  • Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  • Nishio-Hamane D, Shimizu A, Nakahira R, Niwa K, Sano-Furukawa A, Okada T, Yagi T, Kikegawa T (2010) The stability and equation of state for the cotunnite phase of TiO2 up to 70 GPa. Phys Chem Miner 37:129–136

    Article  Google Scholar 

  • Ohtaka O, Fukui H, Fujisawa T, Kunisada T, Funakoshi K, Utsumi W, Irifune T, Kuroda K, Kikegawa T (2001) Phase relations and equations of state of ZrO2 under high temperature and high pressure. Phys Rev B 63:174108

    Article  Google Scholar 

  • Ohtaka O, Andrault D, Bouvier P, Schultz E, Mezouar M (2005) Phase relations and equation of state of ZrO2 to 100 GPa. J Appl Crystallogr 38:727–733

    Article  Google Scholar 

  • Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron system. Phys Rev B 23:5048–5079

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  • Sakai T, Ohtani E, Hirao N, Ohishi Y (2011) Eqation of state of the NaCl-B2 phase up to 304 GPa. J Appl Phys 108:084912

    Article  Google Scholar 

  • Sato T, Funamori N, Yagi T, Miyajima N (2005) Post-PbCl2 phase transformation in TeO2. Phys Rev B 72:092101

    Article  Google Scholar 

  • Seto Y, Nishio-Hamane D, Nagai T, Sata N (2010) Development of a software suite on X-ray diffraction experiments. Rev High Press Sci Technol 20:269–276

    Article  Google Scholar 

  • Suyama R, Ashida T, Kume S (1985) Synthesis of the orthorhombic phase of ZrO2. J Am Ceram Soc 68:314–315

    Article  Google Scholar 

  • Teufer G (1962) The crystal structure of tetragonal ZrO2. Acta Crystallogr 15:1187

    Article  Google Scholar 

  • Tsuchiya T, Tsuchiya J (2011) Prediction of a hexagonal SiO2 phase affecting stabilities of MgSiO3 and CaSiO3 at multimegabar pressure. Proc Natl Acad Sci USA 108:1252–1255

    Article  Google Scholar 

  • Tsuchiya T, Tsuchiya J, Umemoto K, Wentzcovitch RM (2004) Phase transition in MgSiO3 perovskite in the earth’s lower mantle. Earth Planet Sci Lett 224:241–248

    Article  Google Scholar 

  • Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalues formation. Phys Rev B 41:7892–7895

    Article  Google Scholar 

Download references

Acknowledgments

High pressure and high temperature in situ X-ray data were acquired at SPring-8 (Proposal nos. 2011B1449, 2012B1344 and 2013B1141) and KEK (Proposal no. 2013G540). This work was supported by a Young Scientists B Grant (no. 23740389) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Nishio-Hamane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishio-Hamane, D., Dekura, H., Seto, Y. et al. Theoretical and experimental evidence for the post-cotunnite phase transition in zirconia at high pressure. Phys Chem Minerals 42, 385–392 (2015). https://doi.org/10.1007/s00269-014-0728-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-014-0728-3

Keywords

Navigation