Skip to main content
Log in

Effect of the contact conductivity of the diamond–metal binder interface on the thermal conductivity of diamond-containing composites

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The effect has been studied of the contact conductivity of the diamond–metal binder interface on the thermal conductivity of diamond-containing composites having two- and three-component nickel-based metal binders. A device and procedure have been developed for measuring the thermal conductivity coefficients of binders and based on them diamond-containing composites. The dependence of the thermal conductivity coefficients on the compositions (particularly, the presence of the carbide-forming additives) and structures has been analyzed. A theoretical model of the composite has been proposed, which allows for the real shape of a diamond crystal and contact conductivity of its faces. The estimation of the thermal contact conductivity of the interface has been derived by solving the inverse problem. It agrees satisfactory with the literature data on direct physical studies and similar estimates for composites with aluminum and copper binders. The influence of the contact resistance on the temperature mode of the diamond tool operation has been indicated by the results of modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruch, P.W., Beffort, O., Kleiner, S., Weber, L., and Uggowitzer, P.J., Selective interfacial bonding in Al(Si)–diamond composites and its effect on thermal conductivity, Compos. Sci. Techn., 2006, vol. 66, pp. 2677–2685.

    Article  CAS  Google Scholar 

  2. Flaquer, J., Rios, A., Martin-Meizoso, A., Nogales, S., and Böhm, H., Effect of diamond shapes and associated thermal boundary resistance on thermal conductivity of diamond-based composites, Comput. Mater. Sci., 2007, vol. 41, pp. 156–163.

    Article  CAS  Google Scholar 

  3. Schubert, T., Ciupinski, L., Zielinski, W., Michalski, A., Weißgärber, T., and Kieback, B., Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications, Scr. Mater., 2008, vol. 58, pp. 263–266.

    Article  CAS  Google Scholar 

  4. Xia, Y., Song, Y., Lin, C., Cui, S., and Fang, Z., Effect of carbide formers on microstructure and thermal conductivity of diamond-Cu composites for heat sink materials, Trans. Nonferrous Met. Soc., China, 2009, vol. 19, pp. 1161–1166.

    Article  CAS  Google Scholar 

  5. Kidalov, S.V. and Shakhov, F.M., Thermal conductivity of diamond composites, Mater., 2009, vol. 2, pp. 2467–2495.

    Article  CAS  Google Scholar 

  6. Mesnyankin, S.Yu., Vikulov, A.G., and Vikulov, D.G., Modern view on the problems of thermal contacting of solids, Physics–Uspekhi, 2009, vol. 179, no. 9, pp. 945–970.

    Google Scholar 

  7. Chu, K., Jia, C.-C., Liang, X., Chen, H., Gao, W., and Guo, H., Modeling the thermal conductivity of diamond reinforced aluminium matrix composites with inhomogeneous interfacial conductance, Materials & Design, 2009, vol. 30, pp. 4311–4316.

    Article  CAS  Google Scholar 

  8. Ekimov, E.A., Suetin, N.V., Popovich, A.F., and Ralchenko, V.G., Thermal conductivity of diamond composites sintered under high pressures, Diamond Relat. Mater., 2008, vol. 17, pp. 838–843.

    Article  CAS  Google Scholar 

  9. Stoner, R.J. and Maris, H.J., Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K, Phys. Rev. B, 1993, vol. 48, pp. 16373–16387.

    Article  CAS  Google Scholar 

  10. Stoner, R.J., Maris, H.J., Anthony, T.R., and Banholzer, W.F., Measurements of the Kapitza conductance between diamond and several metals, Phys. Rev. Let., 1992, vol. 68, pp. 1563–1566.

    Article  CAS  Google Scholar 

  11. Cahill, D.G., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R., and Phillpot, S.R., Nanoscale thermal transport, J. Appl. Phys., 2003, vol. 93, no. 2, pp. 793–818.

    Article  CAS  Google Scholar 

  12. Chen, H., Jia, C.C., and Li, S.J., Effect of Cr addition and processing conditions on interface microstructure and thermal conductivity of diamond/Cu composite, Proc. 18 th Int. Conf. on Composite Mater. (ICCM18), August 21–26, 2011, ICC Jeju, Korea.

    Google Scholar 

  13. Weber, L. and Tavangar, R., On the influence of active element content on the thermal conductivity and thermal expansion of Cu–X (X=Cr, B) diamond composites, Scripta Mater., 2007, vol. 57, pp. 988–991.

    Article  CAS  Google Scholar 

  14. Monachon, C. and Weber, L., Effect of diamond surface orientation on the thermal boundary conductance between diamond and aluminum, Diamond Relat. Mater., 2013, vol. 39, pp. 8–13.

    Article  CAS  Google Scholar 

  15. Monachon, C., Schusteritsch, G., Kaxiras, E., and Weber, L., Qualitative link between work of adhesion and thermal conductance of metal/diamond interfaces, J. Appl. Phys., 2014, vol. 115, no. 12, art. 123509.

    Article  Google Scholar 

  16. Novikov, N.V., Maistrenko, A.L., Kushch, V.I., and Ivanov, S.A., Assessment of the quality of composite diamond-containing materials by electrical and thermal conductivities, Physicochemical Mechanics Mater., 2006, no. 1, pp. 105–112.

    Google Scholar 

  17. Novikov, N.V., Maistrenko, A.L., Kushch, V.I., and Ivanov, S.A., Assessment of the quality of metal-diamond composites from their heat conductivity and electrical resistance, Mechanics composite mater., 2006, vol. 42, no. 3, pp. 361–374.

    Article  Google Scholar 

  18. Maistrenko, A.L., Ivanov, S.A., Pereyaslov, V.P., and Voloshin, M.N., Intensive electric sintering of diamond-containing composite materials, Superhard Mater., 2000, vol. 22, no. 5, pp. 36–42.

    Google Scholar 

  19. Shmegera, P.S., Intensive electric sintering of metal matrices of diamond-containing composites in the presence of a liquid phase in Porodorazrushayushchii i metalloobrabatyvayushchii instrument—tekhnika i tekhnologiya ego izgotovleniya i primeneniya (Rock Destruction and Metal-Working Tools—Techniques and Technology of the Tool Production and Applications), Collect. Sci. Papers, Kiev Bakul’ ISM, Nat. Acad. Sci., 2012, issue 15, pp. 507–510.

    Google Scholar 

  20. Nash, P., Choo, H., and Schwarz, R.B., Thermodynamic calculation of phase equilibria in the Ti–Co and Ni–Sn systems, J. Mater. Science, 1998, vol. 33, pp. 4929–4936.

    Article  CAS  Google Scholar 

  21. Schmetterer, C., Flandorfer, H., Richter, K.W., et al., A new investigation of the system Ni–Sn/C, Intermetallics, 2007, vol. 15, pp. 869–884.

    Article  CAS  Google Scholar 

  22. Klepser, C.A., Growth of Intermetallic Phases at Low Temperature, PhD Thesis, MIT, 1996.

    Google Scholar 

  23. Hasselman, D.P.H. and Johnson, L.F., Effective thermal conductivity of composites with interfacial thermal barrier resistance, J. Comput. Mater., 1987, vol. 21, pp. 508–515.

    Article  Google Scholar 

  24. Yamamoto, Y., Imai, T., Tanabe, K., et al., The measurement of thermal properties of diamond, Diamond Relat. Mater., 1997, vol. 6, pp. 1057–1061.

    Article  CAS  Google Scholar 

  25. Kushch, V. I., Micromechanics of composites: multipole expansion approach, Elsevier, 2013.

    Google Scholar 

  26. Zuzovsky, M. and Brenner, H., Effective conductivities of composite materials composed of cubic arrangements of spherical particles embedded in an isotropic matrix, Z. Agnew Math. Phys. (ZAMP), 1977, vol. 28, pp. 979–992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kushch.

Additional information

Original Ukrainian Text © R.S. Shmegera, Ya.O. Podoba, V.I. Kushch, A.S. Belyaev, 2015, published in Sverkhtverdye Materialy, 2015, Vol. 37, No. 4, pp. 39–52.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmegera, R.S., Podoba, Y.O., Kushch, V.I. et al. Effect of the contact conductivity of the diamond–metal binder interface on the thermal conductivity of diamond-containing composites. J. Superhard Mater. 37, 242–252 (2015). https://doi.org/10.3103/S1063457615040048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457615040048

Keywords

Navigation