Skip to main content
Log in

Polyethyleneimine-Protected Ag2S Quantum Dots for Near-Infrared Fluorescence-Enhanced Detection of Trace-Level Hg2+ in Water

  • ANALYTICAL CHEMISTRY
  • Published:
Journal of Water Chemistry and Technology Aims and scope Submit manuscript

Abstract

In this work, we have developed a near-infrared emissive polyethyleneimine capped Ag2(PEI-Ag2S QD) quantum dots based chemosensor for sensing trace-level Hg2+ in water by taking advantage of the metal-induced aggregation strategy. The fluorescence determination of Hg2+ by PEI-Ag2S QD at different pH (pH 4, 7, and 10) were performed, respectively. Under the optimum conditions, the selectivity of this system for Hg2+ over other metal ions in aqueous solutions was remarkably high, and its detection limits was 0.5 nM at pH 4. In addition, the present approach provides the advantages of rapidity, simplicity, low background and low cost. The assay also offers great potential for specific detection of Hg2+ in real water samples. This developed PEI-Ag2S QD-based method presages more opportunities for application in environmental systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Renzoni, A., Zino, F., and Franchi, E., Mercury levels along the food chain and risk for exposed populations, Environ. Res., 1998, vol. 77, no. 2, pp. 68–72.

    Article  CAS  Google Scholar 

  2. Harris, H.H., Pickering, J., and George, G.N., The chemical form of mercury in fish, Science, 2003, vol. 301, pp. 1203–1208.

    Article  CAS  Google Scholar 

  3. Ghaedi, M., Fathi, M.R., Shokrollahi, A., and Shajarat, F., Highly selective and sensitive preconcentration of mercury ion and determination by cold vapor atomic absorption spectroscopy, Anal. Lett., 2006, vol. 39, pp. 1171–1185.

    Article  CAS  Google Scholar 

  4. Zhao, Y., Zheng, J., Fang, L., Lin, Q., Wu, Y., Xue, Z., and Fu, F., Speciation analysis of mercury in natural water and fish samples by using capillary electrophoresis–inductively coupled plasma mass spectrometry, Talanta, 2012, vol. 89, pp. 280–285.

    Article  CAS  Google Scholar 

  5. Li, Y., Chen, C., Li, B., Sun, J., Wang, J., Gao, Y., et al., Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS, J. Anal. At. Spectrom., 2006, vol. 21, pp. 94–96.

    Article  Google Scholar 

  6. Bhanjana, G., Dilbaghi, N., Kumar, R., and Kumar, S., Zinc oxide quantum dots as efficient electron mediator for ultrasensitive and selective electrochemical sensing of mercury, Electrochim. Acta, 2015, vol. 178, pp. 361–367.

    Article  CAS  Google Scholar 

  7. Leopold, K., Foulkes, M., and Worsfold, P.J., Gold-coated silica as a preconcentration phase for the determination of total dissolved mercury in natural waters using atomic fluorescence spectrometry, Anal. Chem., 2009, vol. 81, pp. 3421–3428.

    Article  CAS  Google Scholar 

  8. Zi, H.G., Gan, W.E., Han, S.P., Jiang, X.J., and Wan, L.Z., Line sorption preconcentration-cold vapor atomic fluorescence spectrometry, Chin. J. Anal. Chem., 2009, vol. 7, pp. 1029–1032.

    Article  Google Scholar 

  9. Eftekhari, E., Wang, W., Li, X., Nikhil, A., Wu, Z., Klein, R., et al., Picomolar reversible Hg(II) solid-state sensor based on carbon dots in double heterostructure colloidal photonic crystals, Sens. Actuators, B, 2017, vol. 240, pp. 204–210.

    Article  CAS  Google Scholar 

  10. Chansuvarn, W., Tuntulani, T., and Imyim, A., Colorimetric detection of mercury(II) based on gold nanoparticles, fluorescent gold nanoclusters and other gold-based nanomaterials, TrAC,Trends Anal. Chem., 2015, vol. 65, pp. 83–96.

    Article  CAS  Google Scholar 

  11. Fu, A.H., Gu, W.W., Larabell, C., and Alivisatos, A.P., Semiconductor nanocrystals for biological imaging, Curr. Opin. Neurobiol., 2005, vol. 15, pp. 568–575.

    Article  CAS  Google Scholar 

  12. Dai, Z., Zhang, J.M., Dong, Q.X., Guo, N., Xu, S.C., Sun, B., and Bu, Y.H., Novel sorbents for mercury emissions control from coal-fired power plants, J. Chin. Inst. Chem. Eng., 2007, vol. 15, pp. 791–794.

    Article  CAS  Google Scholar 

  13. Hu, T., Yan, X., Na, W., and Su, X., Aptamer-based aggregation assay for mercury(II) using gold nanoparticles and fluorescent CdTe quantum dots, Microchim. Acta, 2016, vol. 183, no. 7, pp. 2131–2137.

    Article  CAS  Google Scholar 

  14. Xia, Y.S. and Zhu, C.Q., Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (II), Talanta, 2008, vol. 75, no. 1, pp. 215–221.

    CAS  Google Scholar 

  15. Ke, J., Li, X.Y., Shi, Y., Zhao, Q.D., and Jiang, X.C., A facile and highly sensitive probe for Hg(II) based on metal-induced aggregation of ZnSe/ZnS quantum dots, Nanoscale, 2012, vol. 4, pp. 4996–5001.

    Article  CAS  Google Scholar 

  16. Li, Z.Z., Zhang, Q.Y., Huang, H.Y., Ren, C.J., Pan, Y.J., Wang, Q., and Zhao, Q., RGDS-conjugated C-dSeTe/CdS quantum dots as near-infrared fluorescent probe: preparation, characterization and bioapplication, J. Nanopart. Res., 2016, vol. 18, no. 12, pp. 373–388.

    Article  Google Scholar 

  17. Buffet, P.E., Zalouk-Vergnoux, A., Poirier, L., Lopes, C., Risso-de-Faverney, C., Guibbolini, M., et al., Cadmium sulfide quantum dots induce oxidative stress and behavioral impairments in the marine clam Scrobicularia plana,Environ. Toxicol. Chem., 2015, vol. 34, no. 7, pp. 1659–1664.

    Article  CAS  Google Scholar 

  18. Liu, L., Zhang, J., Su, X., and Mason, R.P., In vitro and In vivo assessment of CdTe and CdHgTe toxicity and clearance, J. Biomed. Nanotechnol., 2008, vol. 4, no. 4, pp. 524–528.

    Article  CAS  Google Scholar 

  19. Kim, J.H., Lee, B.R., Choi, E.S., Kim, E., and Kim, H.R., Carcinogenic activity of PbS quantum dots screened using exosomal biomarkers secreted from HEK293 cells, Int. J. Nanomed., 2015, vol. 10, pp. 5513–5528.

    Article  Google Scholar 

  20. O’Hara, T., Seddon, B., O’Connor, A., McClean, S., Singh, B., Iwuoha, E., et al., Quantum dot nanotoxicity investigations using human lung cells and TOXOR electrochemical enzyme assay methodology, ACS Sens., 2017, vol. 2, no. 1, pp. 165–171.

    Article  Google Scholar 

  21. Wang, C.X., Wang, Y., Xu, L., Zhang, D., Liu, M.X., Li, X.W., et al., Facile aqueous-phase synthesis of biocompatible and fluorescent Ag2S nanoclusters for bioimaging: tunable photoluminescence from red to near infrared, Small, 2012, vol. 8, no. 20, pp. 3137–3142.

    Article  CAS  Google Scholar 

  22. Duman, F.D., Hocaoglu, I., Ozturk, D.G., Gozuacik, D., Kiraza, A., and Acar, H.Y., Highly luminescent and cytocompatible cationic Ag2S NIR-emitting quantum dots for optical imaging and gene transfection, Nanoscale, 2015, vol. 7, no. 26, pp. 11352–11362.ììì

    Article  CAS  Google Scholar 

  23. Luo, J.D., Xie, Z.L., Lam, J.W.Y., Cheng, L., Chen, H.Y., Qiu, C.F., et al., Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chem. Commun., 2001, vol. 18, pp. 1740–1741.

    Article  Google Scholar 

  24. Ding, D., Li, K., Liu, B., and Tang, B.Z., Bioprobes based on AIE fluorogens, Acc. Chem. Res., 2013, vol. 46, no. 11, pp. 2441–2453.

    Article  CAS  Google Scholar 

  25. Ding, Y.B., Shi, L.L., and Wei, H.A., A “turn on” fluorescent probe for heparin and its oversulfated chondroitin sulfate contaminant, Chem. Sci., 2015, vol. 6, pp. 6361–6366.

    Article  CAS  Google Scholar 

  26. Yan, D., He, Y., Ge, Y.L., and Song, G.W., Fluorescence “turn on-off” detection of heparin and heparinase I based on the near-infrared emission polyethyleneimine capped Ag2S quantum dots, Sens. Actuators, B, 2017, vol. 240, pp. 863–869.

    Article  CAS  Google Scholar 

  27. Wang, L., Li, B.Q., and Xu, F., High-yield synthesis of strong photoluminescent N-doped carbon nanodots derived from hydrosoluble chitosan for mercury ion sensing via smartphone APP, Biosens. Bioelectron., 2016, vol. 79, pp. 1–8.

    Article  CAS  Google Scholar 

  28. Wang, P. and Zhao, L.Y., Dual-emitting fluorescent chemosensor based on resonance energy transfer from poly (arylene ether nitrile) to gold nanoclusters for mercury detection, Sens. Actuators, B, 2016, vol. 230, pp. 337–344.

    Article  CAS  Google Scholar 

  29. Fang, Q. and Liu, Q., An aqueous fluorescent probe for Hg2+ detection with high selectivity and sensitivity, Luminescence, 2015, vol. 30, pp. 1280–1284.

    Article  CAS  Google Scholar 

  30. Yang, R. and Ding, X.J., A novel fluorescent sensor for mercury (II) ion using self-assembly of poly(diallyl dimethyl ammonium)chloride functionalized CdTe quantum dots, Anal. Methods, 2015, vol. 7, no. 2, pp. 436–442.

    Article  CAS  Google Scholar 

  31. Li, N. and Dai, J.K., β-Carboline-functionalized dithioacetal as Hg2+-selective fluorescence probe in water, Spectrochim. Acta, 2015, vol. 136, pp. 900–905.

    Article  CAS  Google Scholar 

  32. Ma, Y.H., Zhang, Z., Xu, Y.L., Ma, M., Chen, B., Wei, L., and Xiao, L.H., A bright carbon-dot-based fluorescent probe for selective and sensitive detection of mercury ions, Talanta, 2016, vol. 161, pp. 476–481.

    Article  CAS  Google Scholar 

  33. Zhu, R. and Zhou, Y., Detection of Hg2+ based on the selective inhibition of peroxidase mimetic activity of BSA-Au clusters, Talanta, 2013, vol. 117, pp. 127–132.

    Article  CAS  Google Scholar 

  34. Isaad, J. and Achari, E.A., Azathia crown ether possessing a dansyl fluorophore moiety functionalized silica nanoparticles as hybrid material for mercury detection in aqueous medium, Tetrahedron, 2013, vol. 69, no. 24, pp. 4866–4874.

    Article  CAS  Google Scholar 

  35. Yantasee, W., Lin, Y.H., Zemanian, T.S., and Fryxell, G.E., Voltammetric detection of lead(II) and mercury(II) using a carbon paste electrode modified with thiol self-assembled monolayer on mesoporous silica (SAMMS), Analyst, 2003, vol. 128, no. 5, pp. 467–472.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Supported by National Natural Science Foundation of China (21707030) and Wuhan Youth Science and technology plan (2016070204010133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. He.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, J.Q., Yan, D., He, Y. et al. Polyethyleneimine-Protected Ag2S Quantum Dots for Near-Infrared Fluorescence-Enhanced Detection of Trace-Level Hg2+ in Water. J. Water Chem. Technol. 42, 36–44 (2020). https://doi.org/10.3103/S1063455X20010105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063455X20010105

Keywords:

Navigation