Skip to main content
Log in

Efficient Detection of Trace Hg2+ in Water Based on the Fluorescence Quenching of Environment-friendly Thiolfunctionalized Poly(vinyl alcohol) Capped CdS Quantum Dots Nanocomposite

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Absract

Using environment-friendly materials for sensing toxic metal ions has drawn significant attention in recent research. Herein, we present an aqueous synthesis of stable CdS quantum dots (QDs) using thiol-functionalized poly(vinyl alcohol) (PVA) as the unique capping ligand for the detection of trace Hg2+ in environmental water samples. The CdS QDs with an average size of 3.3 nm had good water-solubility and favorable fluorescence with a quantum yield of 32.8% and a longer luminescence lifetime of 31.9 ns. The fluorescence intensity of QDs aqueous solution in the 520 nm wavelength was quenched upon the addition of Hg2+. Under the optimal conditions, the ratio of the blank fluorescence intensity to the quenched fluorescence intensity was linearly proportional to the Hg2+concentration from 2 to 4000 nM with a detection limit of 1 nM. Also, many co-existing metal ions were not interfered with the detection of Hg2+. This nanomaterial was successfully applied to the measurement of Hg2+ in water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Chen, B.Z. Zheng, Y. Guo, J. Du, D. Xiao, L. Bo, Talanta, 2013, 777, 338.

    Article  Google Scholar 

  2. J.L. MacLean, K. Morishita, J. Liu, Biosens. Bioelectron., 2013, 48, 82.

    Article  CAS  PubMed  Google Scholar 

  3. N. Velitchkova, E.N. Pentcheva, N. Daskalova, Spectrochim. Acta, Part B, 2004, 59, 871.

    Article  Google Scholar 

  4. R. Vanesa, C.M. Isabel, L. Isela, B. Carlos, Spectrochim. Acta, Part B, 2011, 66, 156.

    Article  Google Scholar 

  5. X. Ma, F.Y. Song, L. Wang, Y.X. Cheng, C.J. Zhu, J. Polym. Sci., Polym. Chem. Ed., 2012, 50, 517.

    Article  CAS  Google Scholar 

  6. M. Vendrell, D.T. Zhai, J.C. Er, Y.T. Chang, Chem. Rev., 2012, 772, 4391.

    Article  Google Scholar 

  7. P. Michler, A. Imamoglu, M.D. Mason, P.J. Carson, G.F. Strouse, S.K. Buratto, Nature, 2000, 406, 968.

    Article  CAS  PubMed  Google Scholar 

  8. J.S. Owen, J. Park, P.E. Trudeau, A.P. Alivisatos, J. Am. Chem. Soc., 2008, 730, 12279.

    Article  Google Scholar 

  9. A. Stoiljkovic, R. Venkatesh, E. Klimov, V. Raman, J.H. Wendorff, A. Greiner, Macromolecules, 2009, 42, 6147.

    Article  CAS  Google Scholar 

  10. S.M. Herman and A.P.M. Alexandra, Mater. Chem. Phys., 2011, 725, 7097.

    Google Scholar 

  11. J. Aldana, N. Lavelle, Y.J. Wang, X.G. Peng, J. Am. Chem. Soc., 2005, 727, 2496.

    Article  Google Scholar 

  12. H. Li, W.Y. Shih, W.H. Shih, Ind. Eng. Chem. Res., 2007, 46, 2013.

    Article  CAS  Google Scholar 

  13. L. Dominguez, Z.R. Yue, J. Economy, C.L. Mangun, React. Funct. Polym., 2002, 53, 205.

    Article  CAS  Google Scholar 

  14. H.M. Wang, P.F. Fang, Z. Chen, S.J. Wang, Appl. Surf. Sci., 2007, 253, 8495.

    Article  CAS  Google Scholar 

  15. I.S. Elashmawi, N.A. Hakeem, M.S. Selim, Mater. Chem. Phys., 2009, 775, 132.

    Article  Google Scholar 

  16. J. Tauc and A. Menth, J. Non-Cryst. Solids, 1972, 8-70, 569.

    Article  Google Scholar 

  17. J.O. Winter, N Gomez, S. Gatzert, C.E. Schmidt, B.A. Korgel, Colloids Surf., A, 2005, 254, 147.

    Article  CAS  Google Scholar 

  18. L.E. Brus, J. Chem. Phys., 1984, 80, 4403.

    Article  CAS  Google Scholar 

  19. L. Qi, H. Colfen, M. Antonietti, Nano Lett., 2001, 7, 61.

    Article  Google Scholar 

  20. Y. Yang, H. Chen, X. Bao, J. Cryst. Growth, 2003, 252, 251.

    Article  CAS  Google Scholar 

  21. B.T. Suo, X. Su, J. Wu, D. Chena, A. Wang, Z.H Guo, Mater. Chem. Phys., 2010, 779, 237.

    Article  Google Scholar 

  22. V.S. Gurin and M.V. Artemyev, J. Cryst. Growth, 1994, 738, 993.

    Google Scholar 

  23. M. Abhijit, S. Jony, D. Goutam, Opt. Mater., 2011, 34, 6.

    Article  Google Scholar 

  24. J. Li, F. Mei, W.Y. Li, X.W. He, Y.K. Zhang, Spectrochim. Acta, Part A, 2008, 70, 811.

    Article  Google Scholar 

  25. Q. Mu, Y. Li, H. Xu, Y.F. Ma, W.H. Zhu, X.H. Zhong, Talanta, 2014, 779, 564.

    Article  Google Scholar 

  26. J. Wang, N. Li, F. Shao, H.Y. Han, Sens. Actuators, B, 2015, 207, 74.

    Article  CAS  Google Scholar 

  27. Y.Q. Wang, Y. Liu, X.W. He, W.Y. Li, Y.K. Zhang, Talanta, 2012, 99, 69.

    Article  CAS  PubMed  Google Scholar 

  28. F.P. Yang, Q. Ma, W. Yu, X.G. Su, Talanta, 2011, 84, 411.

    Article  CAS  PubMed  Google Scholar 

  29. F. Ma, M.T. Sun, K. Zhang, S.H. Wang, Sens. Actuators, B, 2015, 209, 377.

    Article  CAS  Google Scholar 

  30. E.M. Ali, Y. Zheng, H. Yu, J.Y. Ying, Anal. Chem., 2007, 79, 9452.

    Article  CAS  PubMed  Google Scholar 

  31. Y.S. Xia and C.Q. Zhu, Talanta, 2008, 75, 215.

    PubMed  Google Scholar 

  32. K. Masilamany and N. Ramaier, Sens. Actuators, B, 2009, 739, 91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoujun Lai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, X., Fan, H., Zhang, Y. et al. Efficient Detection of Trace Hg2+ in Water Based on the Fluorescence Quenching of Environment-friendly Thiolfunctionalized Poly(vinyl alcohol) Capped CdS Quantum Dots Nanocomposite. ANAL. SCI. 32, 161–165 (2016). https://doi.org/10.2116/analsci.32.161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.32.161

Keywords

Navigation