Skip to main content
Log in

Innovative Approaches to Developing Radiation Technologies for Processing Biological Objects

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Experimental studies on the radiation treatment of food products by various types of ionizing radiation are conducted at Moscow State University’s Faculty of Physics. The effect different doses of X-ray radiation have on the biochemical characteristics of potatoes is considered as an alternative to gamma radiation and accelerated electrons. The effect different doses of accelerated electrons have on the microbiological parameters of refrigerated fish products is also considered. Results are presented from studies on the radiation sterilization of bioimplants in combination with chemical action. The proposed technique of combined sterilization based on the effect of an ozone–oxygen mixture and a beam of accelerated electrons allows the radiation dose of bioimplants to be reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nouri, J. and Toofanian, F., Pak. J. Biol. Sci., 2001, vol. 4, p. 1275.

    Article  Google Scholar 

  2. Burton, W.G. and Hannan, R.S., J. Sci. Food Agric., 1957, vol. 8, p. 707.

    Article  Google Scholar 

  3. Ghanekar, A.S., Padwal-Dessi, S.R., et al., J. Agric. Food Chem., 1983, vol. 31, p. 1009.

    Article  Google Scholar 

  4. Frazier, M.J., et al., Am. J. Potato Res., 2006, vol. 83, p. 31.

    Article  ADS  Google Scholar 

  5. Rezaee, M., et al., J. Agric. Sci. Technol., 2011, vol. 13, p. 829.

    Google Scholar 

  6. Neelma, M., et al., Pak. J. Life Soc. Sci., 2015, vol. 13, no. 3, p. 153.

    Google Scholar 

  7. Hayashi, T. and Todoriki, S., in Proc. FNCA Workshop on Application of Electron Accelerator, Takasaki, 2002, p. 100.

    Google Scholar 

  8. Hayashi, T. and Todoriki, S., Radiat. Phys. Chem., 2000, vol. 57, p. 253.

    Article  ADS  Google Scholar 

  9. Alimov, A.S., Bliznyuk, U.A., Borchegovskaya, P.U., Varzar, S.M., Elansky, S.N., Ishkhanov, B.S., Litvinov, U.U., Matveychuk, I.V., Nikolaeva, A.A., Rozanov, V.V., Studenikin, F.R., Chernyaev, A.P., Shvedunov, V.I., and Yurov, D.S., Bull. Russ. Acad. Sci.: Phys., 2017, vol. 81, no. 6, p. 743.

    Article  Google Scholar 

  10. Jeevanandam, K., Kakatkar, A., et al., Food Res. Int., 2001, vol. 34, p. 739.

    Article  Google Scholar 

  11. Dymsza, H.A., Lee, C.M., et al., J. Food Sci., 1990, vol. 55, p. 1745.

    Article  Google Scholar 

  12. Moini, S., Tahergorabi, R., et al., J. Food Prot., 2009, vol. 72, p. 1419.

    Article  Google Scholar 

  13. Chouliara, I., Savvaidis, I.N., et al., J. Sci. Food Agric., 2005, vol. 85, p. 779.

    Article  Google Scholar 

  14. Arvanitoyannis, I.S., Stratakos, A., et al., Crit. Rev. Food Sci. Nutr., 2008–2009, vol. 49, p. 68.

    Google Scholar 

  15. Hocaoğlu, A., Sükrü Demirci, A., et al., Radiat. Phys. Chem., 2012, vol. 81, p. 1923.

    Article  ADS  Google Scholar 

  16. Ahmed, I.O., Alur, M.D., et al., Int. J. Food Sci. Technol., 1997, vol. 32, no. 4, p. 325.

    Article  Google Scholar 

  17. Lakshmanan, R., Venugopal, V., et al., Food Res. Int., 1999, vol. 32, p. 707.

    Article  Google Scholar 

  18. Lefebvre, N., Thibault, C., et al., Meat Sci., 1994, vol. 36, p. 371.

    Article  Google Scholar 

  19. Heath, J.L., Owens, S.L., et al., Poultry Sci., 1990, vol. 69, p. 313.

    Article  Google Scholar 

  20. Ahn, D.U., Olson, D.G., et al., J. Food Sci., 1998, vol. 63, no. 1, p. 15.

    Article  Google Scholar 

  21. Dziedzic-Goclawska, A., Kaminski, A., et al., Cell Tissue Banking, 2005, vol. 6, p. 201.

    Article  Google Scholar 

  22. Rozanov, V.V., Matveichuk, I.V., et al., Tekhnol. Zhivykh Sist., 2015, vol. 12, no. 4, p. 59.

    Google Scholar 

  23. Lekishvili, M.V., Techniques for fabrication of bone plastic material for reconstructive surgery (experimental study), Doctoral (Med.) Dissertation, Moscow, 2005.

    Google Scholar 

  24. Panteleev, V.I. Rozanov, V.V., et al., Biomed. Radioelektron., 2013, no. 2, p. 3.

    Google Scholar 

  25. Le Huec, J.C., Chirurgie, 1992, vol. 118, nos. 6–7, p. 397.

    Google Scholar 

  26. Kuhne, J.H., Refior, H.J., et al., Z. Orthop. Ihre Grenzgeb., 1994, vol. 132, no. 2, p. 102.

    Article  Google Scholar 

  27. Dormont, D., Transplant. Proc., 1996, vol. 28, no. 12, p. 2931.

    Google Scholar 

  28. Savel’ev, V.I., in Poluchenie i klinicheskoe primenenie demineralizovannykh kostnykh transplantatov (Fabrication and Clinical Use of Demineralized Bone Implants), Leningrad: Nauchno-Issled. Inst. Travmatol. Ortop., 1987, p. 4.

    Google Scholar 

  29. Kakiuchi, M., Ono, K., et al., Int. Orthop., 1996, vol. 20, no. 3, p. 142.

    Article  Google Scholar 

  30. Pugliese, G. and Favero, M.S., Infect. Control Hosp. Epidemiol., 2000, vol. 21, no. 8, p. 549.

    Google Scholar 

  31. Jackson, D.W., Windler, G., et al., Am. J. Sports Med., 1990, vol. 18, no. 1, p. 1.

    Article  Google Scholar 

  32. Tshamala, M., Cox, E., et al., Vet. Immunol. Immunopathol., 1999, vol. 69, no. 1, p. 47.

    Article  Google Scholar 

  33. Danielson, N.E., Sterilization of Medical Products, Johnson & Johnson, 1991, p. 194.

    Google Scholar 

  34. Thorén, K. and Aspenberg, P., Clin. Orthop. Relat. Res., 1995, vol. 318, p. 259.

    Google Scholar 

  35. Russell, J.L. and Block, J.E., Orthopedics, 1999, vol. 22, no. 5, p. 524.

    Google Scholar 

  36. Trends in Radiation Sterilization of Health Care Products, Vienna: International Atomic Energy Agency, 2008.

  37. Singh, R., Singh, D., et al., World J. Radiol., 2016, vol. 8, p. 355.

    Article  Google Scholar 

  38. Beck, J.A., Radiat. Phys. Chem., 2012, vol. 81, p. 1236.

    Article  ADS  Google Scholar 

  39. Baba, T., Kaneko, H., et al., Radiat. Phys. Chem., 2004, vol. 71, p. 207.

    Article  ADS  Google Scholar 

  40. Tallentire, A., Miller, A., et al., Radiat. Phys. Chem., 2010, vol. 79, p. 701.

    Article  ADS  Google Scholar 

  41. Perova, N.V., Dovzhik, I.A., et al., Abstracts of Papers, V Vserossiiskii simpozium “Aktual’nye voprosy tkanevoi i kletochnoi transplantologii” (V All-Russian Symp. “Topical Problems of Tissue and Cell Transplantology”), Ufa, 2012, p. 99.

    Google Scholar 

  42. Campbell, D.G. and Li, P., ANZ J. Surg., 1999, vol. 69, p. 517.

    Article  Google Scholar 

  43. Zhang, Y., Homsi, D., et al., Spine, 1994, vol. 19, p. 304.

    Article  Google Scholar 

  44. Shangina, O.R. and Nigmatullin, R.T., Morfologiya, 2006, vol. 129, no. 3, p. 44.

    Google Scholar 

  45. Standards for Tissue Banking, Hornicek, F.J., Woll, J.E., and Kasprisin, D., Eds., McLean: American Association of Tissue Banks, 2002, 10th ed.

    Google Scholar 

  46. Matveichuk, I.V., Rozanov, V.V., et al., Vopr. Biol., Med. Farm. Khim., 2013, vol. 11, no. 11, p. 92.

    Google Scholar 

  47. Rozanov, V.V., Bykov, V.A., et al., Med. Al’m., 2013, no. 3, p. 24.

    Google Scholar 

  48. Savel’ev, V.I., Bulatov, A.A., and Rykov, Yu.A., RF Patent 2356224, Byull. Izobret., 2009, no. 15.

  49. Tallentire, A. and Miller, A., Radiat. Phys. Chem., 2015, vol. 107, p. 128.

    Article  ADS  Google Scholar 

  50. Matveichuk, I.V., Rozanov, V.V., Gordonova, I.K., et al., RF Patent 2630464, Byull. Izobret., 2017, no. 25.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. A. Bliznyuk.

Additional information

Original Russian Text © U.A. Bliznyuk, V.M. Avdyukhina, P.U. Borchegovskaya, V.V. Rozanov, F.R. Studenikin, A.P. Chernyaev, D.S. Yurov, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Seriya Fizicheskaya, 2018, Vol. 82, No. 6.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bliznyuk, U.A., Avdyukhina, V.M., Borchegovskaya, P.U. et al. Innovative Approaches to Developing Radiation Technologies for Processing Biological Objects. Bull. Russ. Acad. Sci. Phys. 82, 740–744 (2018). https://doi.org/10.3103/S1062873818060072

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873818060072

Navigation