Skip to main content
Log in

Dislocation substructures and internal stress fields in bulk- and differentially quenched rails

  • Proceedings of the International Symposium “Physics of Crystals 2013”
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A layer-by-layer analysis of rails bulk-hardened in oil and differentially hardened in a variety of regimes is performed by means of transmission electron microscopy. Quantitative parameters of dislocation substructures and internal stress fields, and their dependences on the distance from the tread contact surface are established. It is shown that the most dangerous stress concentrators are interfaces between globular cementite matrix particles; such interfaces form predominantly in rails subjected to bulk quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gromov, V.E., Berdyshev, V.A., Kozlov, E.V., et al., Gradientnye strukturno-fazovye sostoyaniya v rel’sovoi stali (Gradient Phase-Structure States of Railway Steels), Novokuznetsk: Nedra Communications LTD, 2000.

    Google Scholar 

  2. Gromov, V.E., Kulagin, N.M., Kulakov, S.M., et al., Aktual’nye problemy proizvodstva rel’sov (Topical Problems of Rails Manufacturing), Novokuznetsk: Siberian State Industrial Univ., 2001.

    Google Scholar 

  3. Kozyrev, N.A., Pavlov, V.V., Godik, L.A., and Dement’ev, V.P., Zheleznodorozhnye rel’sy iz elektrostali (Rails Made of Electric Steel), Novokuznetsk: Siberian State Industrial Univ., 2006.

    Google Scholar 

  4. Vorozhishchev, V.I., Sostav i tekhnologiya proizvodstva rel’sov povyshennoi rabotosposobnosti (Composition and Technology for Producing Rails of Increased Workability), Novokuznetsk: Izd. Novokuznetsk. Poligrafich. Kombinat, 2008.

    Google Scholar 

  5. Olivares, R.O., Garcia, C.I., DeArdo, A., et al., Wear, 2011, no. 271, pp. 364–373.

    Google Scholar 

  6. Kang Hao, Wu Di, and Zhao Xian-Ming, J. Iron Steel Res. Int., 2013, no. 20(2), pp. 33–37.

    Google Scholar 

  7. Gromov, V.E., Volkov, K.V., Ivanov, Yu.F., et al., Probl. Chern. Metallurg. Materialoved., 2013, no. 4, pp. 61–68.

    Google Scholar 

  8. Volkov, K.V., Gromov, V.E., Ivanov, Yu.F., and Grishunin, V.A., Povyshenie ustalostnoi vynoslivosti rel’sovoi stali elektronno-puchkovoi obrabotkoi (The Way to Raise Rails Steel Fatigue Endurance by Means of Electron-Beam Processing), Novokuznetsk: Inter-Kuzbass, 2013.

    Google Scholar 

  9. Gromov, V.E., Ivanov, Yu.F., Grishunin, V.A., et al., Usp. Fiz. Metallov, 2013, no. 1, pp. 67–80.

    Google Scholar 

  10. Utevskii, L.M., Difraktsionnaya elektronnaya mikroskopiya v metallovedenii (Diffraction Electron Microscopy in Metal Science), Moscow: Metallurgiya, 1973.

    Google Scholar 

  11. Andrew, K.W., Dyson, D.J., and Keown, S.R., Interpretation of Electron Diffraction Patterns, New York: Plenum Press, 1971.

    Google Scholar 

  12. Hirsch, P., Howie, A., Nicholson, R.B., Pashley, D.W., and Whelan, M.J., Electron Microscopy of Thin Crystals, Huntington: Krieger, 1977.

    Google Scholar 

  13. Panin, V.E., Likhachev, V.A., and Grinyaev, Yu.V., Strukturnye urovni deformatsii tverdykh tel (Structure Levels of Solids Deformation), Novosibirsk: Nauka, 1985.

    MATH  Google Scholar 

  14. Rybin, V.V., Bol’shie plasticheskie deformatsii i razrushenie metallov (Great Plastic Deformations and Metals Fracture), Moscow: Metallurgiya, 1986.

    Google Scholar 

  15. Eshelby, J.D., Kontinual’naya teoriya dislokatsii (The Continuum Theory of Dislocation), Moscow: Inostr. Lit., 1963.

    Google Scholar 

  16. Finkel’, V.M., Fizicheskie osnovy tormozheniya razrusheniya (Physical Foundations of Fracture Deceleration), Moscow: Metallurgiya, 1977.

    Google Scholar 

  17. Koneva, N.A. and Kozlov, E.V., Izv. Vyssh. Uchebn. Zaved., Fiz., 1982, no. 8, pp. 3–14.

    Google Scholar 

  18. Vladimirov, V.I., Fizicheskaya teoriya prochnosti i plastichnosti. Tochechnye defekty. Uprochnenie i vozvrat (Physical Theory for Strength and Plasticity. Point Defects. Strengthening and Return), Leningrad: Leningrad Polytechnic Inst., 1975.

    Google Scholar 

  19. Shtremel’, M.A., Prochnost’ splavov (Alloys Strength), part 1: Defekty reshetki (Lattice Defects), Moscow: National Univ. of Science and Technology “MISIS”, 1999.

    Google Scholar 

  20. Koneva, N.A., Kozlov, E.V., Trishkina, L.I., and Lychagin, D.V., Novye metody v fizike i mekhanike deformiruemogo tverdogo tela. Sb. trudov mezhdunarodnoi konf. (Proc. Int. Conf. New Methods in Deformed Solid Physics and Mechanics), Tomsk: Tomsk State Univ., 1990, pp. 83–93.

    Google Scholar 

  21. Gromov, V.E., Kozlov, E.V., Bazaikin, V.I., Ivanov, Yu.F., et al., Fizika i mekhanika volocheniya i ob”emnoi shtampovki (Physics and Mechanics of Drawing and Bulk Stamping), Moscow: Nedra, 1997.

    Google Scholar 

  22. Ivanov, Yu.F., Kornet, E.V., Kozlov, E.V., and Gromov, V.E., Zakalennaya konstruktsionnaya stal’: struktura i mekhanizmy uprochneniya (Hardened Structure Steel: Structure and Ways for Strengthening), Novokuznetsk: Siberian State Industrial Univ., 2010.

    Google Scholar 

  23. Ivanov, Yu.F., Tsellermaer, V.V., Ignatenko, L.N., Popova, N.A., Gromov, V.E., and Kozlov, E.V., Materialovedenie, 2001, no. 1, pp. 40–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Gromov.

Additional information

Original Russian Text © V.E. Gromov, K.V. Volkov, A.M. Glezer, Yu.F. Ivanov, K.V. Morozov, K.V. Alsaraeva, S.V. Konovalov, 2014, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2014, Vol. 78, No. 10, pp. 1230–1237.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gromov, V.E., Volkov, K.V., Glezer, A.M. et al. Dislocation substructures and internal stress fields in bulk- and differentially quenched rails. Bull. Russ. Acad. Sci. Phys. 78, 981–987 (2014). https://doi.org/10.3103/S1062873814100086

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873814100086

Keywords

Navigation