Skip to main content
Log in

Thermal Explosion in Ti + Zr + Hf + Nb + Ta + 5С System: Effect of Mechanical Activation

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

The effect of various conditions of mechanical activation of Ti + Zr + Hf + Nb + Ta + 5C mixtures on the microstructure of composite particles, regularities of their ignition, and phase composition of final products was studied. The activation of mixtures was found to decrease the ignition temperature by 600–900°C. It was shown that the intense mechanical activation reduces the activity of the mixture and the subsequent ignition in the thermal explosion mode transforms the mixture into high-entropy compound. Such transformation is not observed in conditions of long-term low-intensity activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Akrami, S., Edalati, P., Fuji, M., and Edalati, K., High-entropy ceramics: Review of principles, production and applications, Mater. Sci. Eng. R Rep., 2021, vol. 146, p. 100644.https://doi.org/10.1016/j.mser.2021.100644

  2. Ye, B., Wen, T., Huang, K., Wang, C.Z., and Chu, Y., First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic, J. Am. Ceram. Soc., 2019, vol. 102, pp. 4344–4352. https://doi.org/10.1111/jace.16295

    Article  CAS  Google Scholar 

  3. Zhang, Q., Zhang, J., Li, N., and Chen, W., Understanding the electronic structure, mechanical properties, and thermodynamic stability of (TiZrHfNbTa)C combined experiments and first-principles simulation, J. Appl. Phys., 2019, vol. 126, no, 2. p. 025101. https://doi.org/10.1063/1.5094580

    Article  CAS  Google Scholar 

  4. Kochetov, N.A. and Kovalev, I.D., Synthesis and thermal stability of the multielement carbide (TaZrHfNbTi)C5, Inorg. Mater., 2021, vol. 57, no. 1, pp. 8–13. https://doi.org/10.1134/S0020168520120109

    Article  CAS  Google Scholar 

  5. Kovalev, D.Yu., Kochetov, N.A., and Chuev, I.I., Fabrication of high-entropy carbide (TiZrHfTaNb)C by high-energy ball milling, Ceram. Int., 2021, vol. 47, pp. 32626–32633. https://doi.org/10.1016/j.ceramint.2021.08.158

    Article  CAS  Google Scholar 

  6. Sarker, P., Harrington, T.J., Gild, J., Sarker, P., Toher, C., Rost, C.M., Dippo, O.F., McElfresh, C., Kaufmann, K., Marin, E., Borowski, L., Hopkins, P.E., Luo, J., Curtarolo, S., Brenner, D.W., and Vecchio, K.S., Phase stability and mechanical properties of novel high entropy transition metal carbides, Acta Mater., 2019, vol. 166, pp. 271–280. https://doi.org/10.1016/j.actamat.2018.12.054

    Article  CAS  Google Scholar 

  7. Sarker, P., Harrington, T.J., Toher, C., Oses, C., Samiee, M., Maria, J.P., Brenner, D.W., Vecchio, K.S., and Curtarolo, S., High-entropy high-hardness metal carbides discovered by entropy descriptors, Nat. Commun., 2018, vol. 9, p. 4980. https://doi.org/10.1038/s41467-018-07160-7

    Article  CAS  Google Scholar 

  8. Jiang, S., Shao, L., Fan, T., Duan, J.M., Chen, X.T., and Tang, B.Y., Mechanical behavior of high entropy carbide (HfTaZrTi)C and (HfTaZrNb)C under high pressure: ab initio study, Int. J. Quantum Chem., 2020, vol. 121, no. 5, pp. 1–11. https://doi.org/10.1002/qua.26509

    Article  CAS  Google Scholar 

  9. Moskovskikh, D.O., Vorotilo, S., Sedegov, A.S., Kuskov, K.V., Bardasova, K.V., Kiryukhantsev-Korneev, P.V., Zhukovskyi, M., and Mukasyan, A.S., High-entropy (HfTaTiNbZr)C and (HfTaTiNbMo)C carbides fabricated through reactive high-energy ball milling and spark plasma sintering, Ceram. Int., 2020, vol. 46, pp. 19008–19014. https://doi.org/10.1016/j.ceramint.2020.04.230

    Article  CAS  Google Scholar 

  10. Wang, F., Zhang, X., Yan, X., Lu, Y., Nastasi, M., Chen, Y., and Cui, B., The effect of submicron grain size on thermal stability and mechanical properties of high-entropy carbide ceramics, J. Am. Ceram. Soc., 2020, vol. 103, pp. 4463–4472. https://doi.org/10.1111/jace.17103

    Article  CAS  Google Scholar 

  11. Feng, L., Fahrenholtz, W.G., and Hilmas, G.E., Low-temperature sintering of single-phase, high-entropy carbide ceramics, J. Am. Ceram. Soc., 2019, vol. 102, pp. 7217–7224. https://doi.org/10.1111/jace.16672

    Article  CAS  Google Scholar 

  12. Chen, H., Xiang, H., Dai, F.Z., Liu, J., Lei, Y., Zhang, J., and Zhou, Y., High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C, J. Mater. Sci. Technol., 2019, vol. 35, pp. 1700–1705. https://doi.org/10.1016/j.jmst.2019.04.006

    Article  CAS  Google Scholar 

  13. Ye, B., Wen, T., Liu, D., and Chu, Y., Oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics at 1073–1473 K in air, Corros. Sci., 2019, vol. 153, pp. 327–332. https://doi.org/10.1016/j.corsci.2019.04.001

    Article  CAS  Google Scholar 

  14. Ye, B., Wen, T., and Chu, Y., High-temperature oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics in air, J. Am. Ceram. Soc., 2020, vol. 103, pp. 500–507. https://doi.org/10.1111/jace.16725

    Article  CAS  Google Scholar 

  15. Wang, H., Cao, Y., Liu, W., and Wang, Y., Oxidation behavior of (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C–xSiC ceramics at high temperature, Ceram, Int., 2020, vol. 46, pp. 11160–11168. https://doi.org/10.1016/j.ceramint.2020.01.137

    Article  CAS  Google Scholar 

  16. Braic, V., Vladescu, A., Balaceanu, M., Luculescu, C.R., and Braic, M., Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings, Surf. Coat. Technol., 2012, vol. 211, pp. 117–121. https://doi.org/10.1016/j.surfcoat.2011.09.033

    Article  CAS  Google Scholar 

  17. Braic, V., Balaceanu, M., Braic, M., Vladescu, A., Panseri, S., Russo, A., Characterization of multiprincipal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications, J. Mech. Behav. Biomed. Mater., 2012, vol. 10, pp. 197–205. https://doi.org/10.1016/j.jmbbm.2012.02.020

    Article  CAS  Google Scholar 

  18. Merzhanov, A.G. and Borovinskaya, I.P., Self-spreading high-temperature synthesis of refractory compounds, Dokl. Chem., 1972, vol. 204, no. 2, pp. 429–431.

    Google Scholar 

  19. Tallarita, G., Licheri, R., Garroni, S., Orrù, R., and Cao, G., Novel processing route for the fabrication of bulk high-entropy metal diborides, Scr. Mater., 2019, vol. 158, pp. 100–104. https://doi.org/10.1016/j.scriptamat.2018.08.039

    Article  CAS  Google Scholar 

  20. Vadchenko, S.G., Boyarchenko, O.D., Shkodich, N.F., and Rogachev, A.S., Thermal explosion in various Ni–Al systems: Effect of mechanical activation. Int. J. Self-Propag. High-Temp. Synth., 2013, vol. 22, no. 1, pp. 60–64. https://doi.org/10.3103/S1061386213010123

    Article  CAS  Google Scholar 

  21. Poluboyarov, V.A., Solonenko, O.P., Zhdanok, A.A., and Pauli, I.A., Comparison of the efficiency of the mills “AGO-2” and “Activator-2SL” at the mechanical activation of titanium powder, J. Sib. Fed. Univ. Eng. Technol., 2017, vol. 10, no. 5, pp. 646–656. https://doi.org/10.17516/1999-494X-2017-10-5-646-656

    Article  Google Scholar 

Download references

Funding

The research was supported by the Russian Science Foundation (project no. 20-13-00277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Vadchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Golosova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadchenko, S.G., Kovalev, I.D., Mukhina, N.I. et al. Thermal Explosion in Ti + Zr + Hf + Nb + Ta + 5С System: Effect of Mechanical Activation. Int. J Self-Propag. High-Temp. Synth. 31, 208–214 (2022). https://doi.org/10.3103/S1061386222040136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386222040136

Keywords:

Navigation