Skip to main content
Log in

Fabrication of Narrow-Fraction Micropowders of NiAl-Based Refractory Alloy CompoNiAl-M5-3

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Powders of new CompoNiAl M5-3 heat-resistant alloy were prepared by mechanoactivated SHS from (Ni–Al–Cr–Co–Hf)–NaCl mixtures. Ni dissolution in Al melt was found to be the motive force of combustion. Unlike the binary Ni–Al system, NiAl is formed not in the melt but in the post-combustion zone as a result of diffusion-controlled processes. Conditions for MASHS were optimized toward fabrication of a superalloy with homogeneous composition/structure and low content of gas impurities. As-prepared combustion product was disintegrated into a powder and the latter was subjected to plasma spheroidization, keeping in mind the needs of additive manufacturing. The attained degree of spheroidization was 98%. The structure and phase/chemical compositions of spherical powders did not differ from those of the synthesized powders. After plasma treatment, the content of gas impurities (О2 and N2) decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quian, M., Metal powder for additive manufacturing, JOM, 2015, vol. 67, no. 3, pp. 536–537. doi 10.1007/s11837-015-1321-z

    Article  Google Scholar 

  2. Gu, D.D., Meiners, W., Wissenbach, K., and Poprawe, R., Laser additive manufacturing of metallic components: Materials, processes and mechanisms, Int. Mater. Rev., 2012, vol. 57, no. 3, pp. 133–164. doi 10.1179/1743280411Y.0000000014

    Article  Google Scholar 

  3. DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-Heid, A., De, A., and Zhang, W., Additive manufacturing of metallic components: Process, structure and properties, Prog. Mater. Sci., 2018, vol. 92, pp. 112–224. doi 10.1016/j.pmatsci.2017.10.001

    Article  Google Scholar 

  4. Liu, E., Jia, J., Bai, Y., Wang, W., and Gao, Y., Study on preparation and mechanical property of nanocrystalline NiAl intermetallic, Mater. Des., 2014, vol. 53, pp. 596–601. doi 10.1016/j.matdes.2013.07.052

    Article  Google Scholar 

  5. Liang, Y., Guo, J., Xie, Y., Zhou, L., and Hu, Z., High temperature compressive properties and room temperature fracture toughness of directionally solidified NiAl-based eutectic alloy, Mater. Des., 2009, vol. 30, pp. 2181–2185. doi 10.1016/j.matdes.2008.08.023

    Article  Google Scholar 

  6. Bochenek, K. and Basista, M., Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications, Prog. Aerosp. Sci., 2015, vol. 79, pp. 136–146. doi 10.1016/j.paerosci. 2015.09.003

    Article  Google Scholar 

  7. Wu, S., Wu, X., Wang, R., Liu, Q., and Gan, L., Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl, Intermetallics, 2014, vol. 55, pp. 108–117. doi 10.1016/j.intermet.2014.04.022

    Article  Google Scholar 

  8. Wang, L., Shen, J., Shang, Z., and Fu, H., Microstructure evolution and enhancement of fracture toughness of NiAl–Cr(Mo)–(Hf, Dy) alloy with a small addition of Fe during heat treatment, Scr. Mater., 2014, vol. 89, no. 1, pp. 1–4. doi 10.1016/j.scriptamat.2014.07.002

    Article  Google Scholar 

  9. Shang, Z., Shen, J., Wang, L., Du, Y., Xiong, Y., and Fu, H., Investigations on the microstructure and room temperature fracture toughness of directionally solidified NiAl–Cr(Mo) eutectic alloy, Intermetallics, 2015, vol. 57, no. 1, pp. 25–33. doi 10.1016/j.intermet. 2014.09.012

    Article  Google Scholar 

  10. Sheng, L.Y., Yang, F., Xi, T.F., Zheng, Y.F., and Guo, J.T., Improvement of compressive strength and ductility in NiAl–Cr(Nb)/Dy alloy by rapid solidification and HIP treatment, Intermetallics, 2012, vol. 27, no. 1, pp. 14–20. doi 10.1016/j.intermet.2012.01.014

    Article  Google Scholar 

  11. Frommeyer, G., Rablbauer, R., and Schäfer, H.J., Elastic properties of B2-ordered NiAl and NiAl–X (Cr, Mo, W) alloys, Intermetallics, 2010, vol. 18, no. 3, pp. 299–305. doi 10.1016/j.intermet.2009.07.026

    Article  Google Scholar 

  12. Zaitsev, A.A., Sentyurina, Z.A., Levashov, E.A., Pogozhev, Y.S., Sanin, V.N., Loginov, P.A., and Petrzhik, M.I., Structure and properties of NiAl–Cr(Co,Hf) alloys prepared by centrifugal SHS casting: 1. Room temperature investigations, Mater. Sci. Eng. A, 2017, vol. 690, pp. 463–472. doi 10.1016/j.msea.2016.09.075

    Article  Google Scholar 

  13. Zaitsev, A.A., Sentyurina, Z.A., Levashov, E.A., Pogozhev, Y.S., Sanin, V.N., Loginov, P.A., and Sidorenko, D.A., Structure and properties of NiAl–Cr(Co,Hf) alloys prepared by centrifugal SHS casting followed by vacuum induction remelting: 2. Evolution of the structure and mechanical behavior at high temperature, Mater. Sci. Eng. A, 2017, vol. 690, pp. 473–481. doi 10.1016/j.msea.2017.02.089

    Article  Google Scholar 

  14. Kaplanskii, Yu.Yu., Zaitsev, A.A., Levashov, E.A., Loginov, P.A., and Sentyurina, Zh.A., NiAl based alloy produced by HIP and SLM of pre-alloyed spherical powders: Evolution of the structure and mechanical behavior at high temperatures, Mater. Sci. Eng. A, 2018, vol. 717, no. 1, pp. 48–59. doi 10.1016/j.msea.2018.01.057

    Article  Google Scholar 

  15. Rogachev, A.S., Tolochko, B.P., Lyakhov, N.Z., Sharafutdinov, M.P., Popkov, N.A., Pirogov, B.Y., and Pis’menskaya, E.B., Characteristic features of structure formation of nickel monoaluminide formed in a gasless combustion wave, Crystallogr. Rep., 2003, vol. 48, no. 3, pp. 466–468. doi 10.1134/1.1578133

    Article  Google Scholar 

  16. Koch, C.C., Materials synthesis by mechanical alloying, Ann. Rev. Mater. Sci., 1989, vol. 19, pp. 121–143. doi 10.1146/annurev.ms.19.080189.001005

    Article  Google Scholar 

  17. Rogachev, A.S., Kochetov, N.A., Kurbatkina, V.V., Levashov, E.A., Grinchuk, P.S., Rabinovich, O.S., Sachkova, N.V., and Bernard, F., Microstructural aspects of gasless combustion of mechanically activated mixtures: 1. High-speed micro video recording of the Ni–Al composition, Combust., Explos., Shock Waves, 2006, vol. 42, no. 4, pp. 421–429. doi 10.1007/s10573-006-0071-1

    Article  Google Scholar 

  18. Kurbatkina, V.V., Levashov, E.A., and Kolesnichenko, K.V., Effect of mechanical pre-activation on reactivity of SHS mixtures, Izv. Vyssh. Uchebn. Zaved. Tsvet. Metall., 2000, no. 5, pp. 61–67.

    Google Scholar 

  19. Mason, B.A., Sippel, T.R., Groven, L.J., Gunduz, I.E., and Son, S.F., Combustion of mechanically activated Ni/Al reactive composites with microstructural refinement tailored using two-step milling, Intermetallics, 2015, vol. 66, pp. 88–95. doi 10.1016/j.intermet. 2015.06.009

    Article  Google Scholar 

  20. Manukyan, Kh.V., Kirakosyan, Kh.G., Grigoryan, Y.G., Niazyan, O.M., Yeghishyan, A.V., Kirakosyan A.G., and Kharatyan, S.L., Mechanism of molten-salt-controlled thermite reactions, Ind. Eng. Chem. Res., 2011, vol. 50, no. 19, pp. 10982–10988. doi 10.1021/ie2003544

    Article  Google Scholar 

  21. Dutta, B. and Froes, F.H., Additive manufacturing technology, in Additive Manufacturing of Titanium Alloys: State of the Art, Challenges, and Opportunities, London: Butterworth–Heineman, 2016, pp. 25–40. doi 10.1016/B978-0-12-804782-8.00003-3

    Chapter  Google Scholar 

  22. Cooke, A. and Slotwinski, J., NISTIR 7873: Properties of Metal Powders for Additive Manufacturing: A Review of the State of the Art of Metal Powder Property Testing, National Institute of Standards and Technology, 2015. doi 10.6028/NIST.IR.7873

    Google Scholar 

  23. Vacuum Systems and Technologies for Metallurgy and Heat Treatment (Catalogues). http://pdf.directindustry.com/pdf/ald/metal-additive-manufacturing/21806-526379.html.

  24. Kaplanskii, Y.Y., Korotitskiy, A.V., Levashov, E.A., Sentyurina, Z.A., Loginov, P.A., Samokhin, A.V., and Logachev, I.A., Microstructure and thermomechanical behavior of Heusler phase Ni2AlHf-strengthened NiAl–Cr(Co) alloy produced by HIP of plasmaspheroidized powder, Mater. Sci. Eng. A, 2018, vol. 729, pp. 398–410. doi 10.1016/j.msea.2018.05.087

    Article  Google Scholar 

  25. Kurbatkina, V.V., Patsera, E.I., and Levashov, E.A., Fabrication of submicron powder of nickel monoaluminide by self-propagating high-temperature synthesis using sodium chloride as a functional additive, Tsvet. Met., 2017, no. 12, pp. 57–65. doi 10.17580/tsm.2017.12.07

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kurbatkina.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurbatkina, V.V., Patsera, E.I., Levashov, E.A. et al. Fabrication of Narrow-Fraction Micropowders of NiAl-Based Refractory Alloy CompoNiAl-M5-3. Int. J Self-Propag. High-Temp. Synth. 27, 236–244 (2018). https://doi.org/10.3103/S1061386218040027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386218040027

Keywords

Navigation