Skip to main content
Log in

Combustion synthesis and structural characterization of YAG: Influence of fuel and Si doping

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Yttrium aluminum garnet (Y3Al5O12, YAG) was synthesized by low-temperature combustion synthesis (CS) with different fuels such as urea, glycine, and ammonium acetate. It has been observed that combination of urea and glycine fuels results in the formation of YAG with some impurity phase. The effect of Si incorporation in the process was studied. The combustion synthesis from mixed fuels and silica was found superior for low-temperature synthesis of pure YAG at without further heat treatment. Phase evolutions and results of flame temperature measurements are reported. Rietveld refinement and analytical calculation of different structural parameters were performed to get proper notion about Si substitution in host matrix. The thermoluminescence (TL) of materials caused by UV irradiation was used to elucidate the nature of traps. The TL analysis revealed the presence of shallow traps whose amount grew with Si doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nakayama, S.A., Ikesue, I., and Sakamoto, M., Preparation of transparent YAG ceramic and its application to window material of infrared spectrophotometer, J. Chem. Soc. Jpn., 2000, vol. 6, no. 4, pp. 437–440.

    Google Scholar 

  2. Tachiwaki, T., Yoshinaka, M., and Hirota, K., Novel synthesis of Y3Al5O12 (YAG) leading to transparent ceramics, Solid State Commun., 2001, vol. 119, no. 10–11, pp. 603–606.

    Article  Google Scholar 

  3. De, G. and van Dijk, H.J.A., Translucent Y3Al5O12 ceramics, Mater. Res. Bull., 1984, vol. 19, no. 12, pp. 1669–1674.

    Article  Google Scholar 

  4. van der Weg, W.F., Popma, Th.J.A., and Vink, A.T., Concentration dependence of UV and electron-excited Tb3+ luminescence in Y3Al5O12, J. Appl. Phys., 1985, vol. 57, no. 12, pp. 5450–5456.

    Article  Google Scholar 

  5. Shoji, I., Jurimura, S., Sato, Y., Taira, T., Ikesue, A., and Yoshida, K., Optical properties and laser characteristics of high Nd3+-doped Y3Al5O12 ceramics, Appl. Phys. Lett., 2000, vol. 77, no. 7, pp. 939–941.

    Article  Google Scholar 

  6. Blumenthal, W.R. and Taylor, S.T., High temperature fracture toughness of single crystal yttrium aluminum garnet, Acta Mater., 1997, vol. 45, no. 7, pp. 3071–3078.

    Article  Google Scholar 

  7. Li, J., Ikegami, T., and Lee, J., Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: The effect of precipitant, J. Eur. Ceram. Soc., 2000, vol. 20, no. 14–15, pp. 2395–2405.

    Article  Google Scholar 

  8. Jung, K.Y. and Kang, Y.C., Luminescence comparison of YAG:Ce phosphors prepared by microwave heating and precipitation methods, Physica B: Condens. Matter, 2010, vol. 405, no. 6, pp. 1615–1618.

    Article  Google Scholar 

  9. Marlot, C., Barraud, E., Gallet, S.L., Eichhorn, M., and Bernard, F., Synthesis of YAG nanopowder by the eco-precipitation method: Influence of pH and study of the reaction mechanisms, J. Solid State Chem., 2012, vol. 191, pp. 114–120.

    Article  Google Scholar 

  10. Lee, J.S., Kumar, P., Gupta, S., Hwan, O.M., Ranade, M.B., and Singh, R.K., Enhanced luminescence properties of YAG:Ce3+ nanophosphor prepared by flame spray pyrolysis, J. Electrochem. Soc., 2010, vol. 157, no. 2, pp. K025–K029.

    Google Scholar 

  11. Yang, L., Lu, T., Xu, H., Zhang, W., and Ma, B., A study on the effect factors of sol–gel synthesis of yttrium aluminum garnet nanopowders, J. Appl. Phys., 2010, vol. 107, no. 6, pp. 064903–064908.

    Article  Google Scholar 

  12. Jiao, H., Ma, Q., He, L., Liu, Z., and Wu, Q., Low temperature synthesis of YAG:Ce phosphors by LiF assisted sol–gel combustion method, Powder Technol., 2010, vol. 198, no. 2, pp. 229–232.

    Article  Google Scholar 

  13. Kamiyama, Y., Hiroshima, T., Isobe, T., Koizuka, T., and Takashima, S., Photostability of YAG:Ce3+ nanophosphors synthesized by glycothermal method, J. Electrochem. Soc., 2010, vol. 157, no. 5, pp. J149–J154.

    Article  Google Scholar 

  14. Yang, Z., Li, X., Yang, Y., and Li, X., The influence of different conditions on the luminescent properties of YAG:Ce phosphor formed by combustion, J. Lumin., 2007, vol. 122, no. 2, pp. 707–709.

    Article  Google Scholar 

  15. Zhang, K., Hu, W., Wu, Y., and Liu, H., Photoluminescence investigations of (Y1-xLnx)3Al5O12:Ce (Ln3+ = Gd3+,La3+) nanophosphors, Physica B: Condens. Matter, 2008, vol. 403, no. 10–11, pp. 1678–1681.

    Article  Google Scholar 

  16. Kim, K.M. and Ryu, J.H., Synthesis of Y3Al5O12:Ce3+ colloidal nanocrystals by pulsed laser ablation and their luminescent properties, J. Alloys Comp., 2013, vol. 576, no. 2, pp. 195–200.

    Article  Google Scholar 

  17. Upasani, M., Butey, B., and Moharil, S.V., Synthesis, characterization, and optical properties of Y3Al5O12:Ce phosphor by mixed fuel combustion synthesis, J. Alloys Comp., 2015, vol. 650, pp. 858–862.

    Article  Google Scholar 

  18. Kingsley, J.J., Manickam, N., and Patil, K.C., Combustion synthesis and properties of fine particle fluorescent aluminous oxides, Bull. Mater. Sci., 1990, vol. 13, no. 3, pp. 179–189.

    Article  Google Scholar 

  19. Glushkova, V.B., Krzhizhanovskaya, V.A., and Egorova, O.N., Interaction of yttrium and aluminum oxide, Inorg. Mater., 1983, vol. 19, no. 1, pp. 80–84.

    Google Scholar 

  20. De With, G., Translucent Y3Al5O12 ceramics, Mater. Res. Bull., 1984, vol. 19, no. 12, pp.1669–1674.

    Article  Google Scholar 

  21. Vrolijk, J.W.G.A., van dem Cruisem, S., and Metselaar, R., The influence of MgO and SiO2 dopants on the sintering behavior of yttrium aluminum garnet ceramics, Ceram. Trans., 1995, vol. 51, pp. 573–577.

    Google Scholar 

  22. Ikesue, A., Yoshida, K., Yamamoto, T., and Yamaga, Y., Optical scattering centers in polycrystalline Nd:YAG laser, J. Am. Ceram. Soc., 1997, vol. 80, no. 6, pp. 1517–1522.

    Article  Google Scholar 

  23. Maître, A., Sallé, C., Boulesteix, R., Baumard, J.-F., and Rabinovitch, Y., Effect of silica on the reactive sintering of polycrystalline Nd:YAG ceramics, J. Am. Ceram. Soc., 2008, vol. 91, no. 2, pp. 406–413.

    Article  Google Scholar 

  24. Kuklja, M., Defects in yttrium aluminum perovskite and garnet crystals: Atomistic study, J. Phys.: Condens. Matter, 2000, vol. 12, pp. 2953–2967.

    Google Scholar 

  25. Wyckoff, R.W.G., Crystal Structures, New York: Wiley, 1965, vol. 1, p. 467.

  26. Shannon, R.D. and Prewitt, C.T., Effective ionic radii in oxides and fluorides, Acta Crystallogr. B, 1969, vol. 25, no. 3, pp. 925–946.

    Article  Google Scholar 

  27. Nien, Y.T., Lu, T.H., Rao Bandi, V., and Chen, I.G., Microstructure and photoluminescence characterizations of Y3Al5O12:Ce phosphor ceramics sintered with silica, J. Am. Ceram. Soc., 2012, vol. 95, no. 4, pp. 1378–1382.

    Article  Google Scholar 

  28. Nien, Y.T., Chen, K.M., Chen, I.G., and Lin, T.Y., Photoluminescence enhancement of Y3Al5O12:Ce nanoparticles using HMDS, J. Am. Ceram. Soc., 2008, vol. 91, no. 11, pp. 3599–3602.

    Article  Google Scholar 

  29. Scherrer, P., Determination of the size and internal structure of colloidal particles using X-rays, Nachrich. Ges. Wiss. Göttingen, 1918, vol. 26, no. 9, pp. 98–100.

    Google Scholar 

  30. Williamson, G.K. and Hall, W.H., X-ray line broadening from filed aluminum and wolfram, Acta Metall., 1953, vol. 1, no. 1, pp. 22–31.

    Article  Google Scholar 

  31. Cullity, B.D., Elements of X-Ray Diffraction, Reading, MA: Addison-Wesley, 1956.

    Google Scholar 

  32. Rietveld, H.M., A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 1969, vol. 2, no. 1, pp. 65–71.

    Article  Google Scholar 

  33. Putz, H., Brandenburg, K., and Bonn, G.R., http://www.crystalimpact.com/match/download.html

  34. Muliuoliene, I., Mathur, S., Jasaitis, D., Shen, H., Sivakov, V., Rapalaviciute, R., Beganskiene, A., and Kareiva, A., Evidence of the formation of mixed-metal garnets via sol–gel synthesis, Opt. Mater., 2003, vol. 22, no. 3, pp. 241–250.

    Article  Google Scholar 

  35. Zhou, Y., Lin, J., Yu, M., Wang, S., and Zhang, H., Synthesis-dependent luminescence properties of Y3Al5O12:Re3+ (Re = Ce, Sm, Tb) phosphors, Mater. Lett., 2002, vol. 56, no. 5, pp. 628–636.

    Article  Google Scholar 

  36. Chen, R. and McKeever, S.W.S., Theory of Thermoluminescence and Related Phenomena, London–New Jersey–Singapore: World Scientific, 1997, pp. 64–65.

    Book  Google Scholar 

  37. Chen, R., Thermoluminescence and Thermoluminescent Dosimetry, Boca Raton: CRC Press, 1984, pp. 49–88.

    Google Scholar 

  38. Stanek, C.R., McClellan, K.J., Levy, M.R., and Grimes, R.W., Phys. Status Solidi B, 2006, vol. 243, no. 1, pp.75–77.

  39. Kröger, F.A. and Vink, H.J., Soviet Solid State Physics, New York: Academic, vol. 3, 1956, pp. 307–435.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Upasani.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upasani, M., Yadav, P.J., Butey, B. et al. Combustion synthesis and structural characterization of YAG: Influence of fuel and Si doping. Int. J Self-Propag. High-Temp. Synth. 26, 22–32 (2017). https://doi.org/10.3103/S1061386217010149

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386217010149

Keywords

Navigation