Skip to main content
Log in

Local Existence of Contact Discontinuities in Relativistic Magnetohydrodynamics

  • Published:
Siberian Advances in Mathematics Aims and scope Submit manuscript

Abstract

We study the free boundary problem for a contact discontinuity for the system of relativistic magnetohydrodynamics. A surface of contact discontinuity is a characteristic of this system with no flow across the discontinuity for which the pressure, the velocity and the magnetic field are continuous whereas the density, the entropy and the temperature may have a jump. For the two-dimensional case, we prove the local-in-time existence in Sobolev spaces of a unique solution of the free boundary problem provided that the Rayleigh-Taylor sign condition on the jump of the normal derivative of the pressure is satisfied at each point of the initial discontinuity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Alinhac, “Existence d’ondes de raréfaction pour des systèmes quasilinéaires hyperboliques multidimensionnels,” Comm. Partial Diff. Equations 14, 173 (1989).

    Article  Google Scholar 

  2. A. M. Anile, Relativistic fluids and magneto-fluids with applications in astrophysics and plasma physics (Cambridge, Cambridge University Press, 1989).

    MATH  Google Scholar 

  3. A. M. Anile and S. Pennisi, “On the mathematical structure of test relativistic magnetofluiddynamics,” Ann. Inst.H.Poincaré, Phys. Theór. 46, 27 (1987).

    MathSciNet  MATH  Google Scholar 

  4. L. Antón, J. A. Miralles, J. M. Martí, J. M. Ibáñez, A. A. Miguel, and P. Mimica, “Relativistic magnetohydrodynamics: renormalized eigenvectors and full wave decomposition Riemann solver,” Astrophys. J., Suppl. Ser. 188, 1 (2010).

    Article  Google Scholar 

  5. A. M. Blokhin and I. Yu. Druzhinin, “Well-posedness of some linear problems on the stability of strong discontinuities in magnetohydrodynamics,” Sibirsk. Mat. Zh. 31, 3 (1990) [Siberian Math. J. 31, 187 (1990)].

    MathSciNet  Google Scholar 

  6. A. Blokhin and Y Trakhinin, Stability of strong discontinuities in magnetohydrodynamics and electrohydrodynamics (New York, Nova Science Publishers, 2003).

    MATH  Google Scholar 

  7. D. Ebin, “The equations of motion of a perfect fluid with free boundary are not well-posed,” Comm. Partial Diff. Equations 12, 1175 (1987).

    Article  MathSciNet  Google Scholar 

  8. H. Freistühler and Y. Trakhinin, “Symmetrizations of RMHD equations in terms of primitive variables and their application to relativistic current-vortex sheets,” Class. Quantum Gravity 30 (8), ID 085012 (2013).

    Article  Google Scholar 

  9. S. K. Godunov, “Symmetrization of magnetohydrodynamics equations. “Chislennye Metody Mekhaniki Sploshnoi Sredy, Novosibirsk” 3, 26 (1972) [in Russian].

    Google Scholar 

  10. J. P. Goedbloed, R. Keppens, and S. Poedts, Advanced magnetohydrodynamics: with applications to laboratory and astrophysical plasmas (Cambridge, Cambridge University Press, 2010).

    Book  Google Scholar 

  11. Y. Guo and I. Tice, “Compressible, inviscid Rayleigh-Taylor instability,” Indiana Uni. Math. J. 60, 677 (2011).

    Article  MathSciNet  Google Scholar 

  12. D. D. Joseph and J.-C. Saut, “Short-wave instabilities and ill-posed initial-value problems,” Theor. Comp. Fluid Dyn. 1, 191 (1990).

    Article  Google Scholar 

  13. T. Kato, “The Cauchy problem for quasi-linear symmetric hyperbolic systems,” Arch. Ration. Mech. Anal. 58, 181 (1975).

    Article  MathSciNet  Google Scholar 

  14. L.D. Landau, E.M. Lifshiz, and L.P. Pitaevskii, Electrodynamics of continuous media (Oxford, Pergamon Press, 1984).

    Google Scholar 

  15. A. Lichnerowicz, Relativistic hydrodynamics and magnetohydrodynamics (New York, Benjamin, 1967).

    MATH  Google Scholar 

  16. A. Morando, Y. Trakhinin, and P. Trebeschi, “Well-posedness of the linearized problem for MHD contact discontinuities,” J. Differential Equations 258, 2531 (2015).

    Article  MathSciNet  Google Scholar 

  17. A. Morando, Y. Trakhinin, and Trebeschi, “Local existence of MHD contact discontinuities,” Arch. Ration. Mech. Anal. 228, 691 (2018).

    Article  MathSciNet  Google Scholar 

  18. T. Ruggeri and A. Strumia, “Convex covariant entropy density, symmetric conservative form, and shock waves in relativistic magnetohydrodynamics,” J. Math. Phys. 22, 1824 (1981).

    Article  MathSciNet  Google Scholar 

  19. P. Secchi, “On the Nash-Moser iteration technique,” Recent Developments of Mathematical Fluid Mechanics, Series: Advances in Mathematical Fluid Mechanics, Eds. H. Amann, Y. Giga, H. Kozono, H. Okamoto, and M. Yamazaki. Basel: Springer, 443, (2016).

    Chapter  Google Scholar 

  20. P. Secchi and Y. Trakhinin, “Well-posedness of the plasma-vacuum interface problem,” Nonlinearity 27, 105 (2014).

    Article  MathSciNet  Google Scholar 

  21. Y. Trakhinin, “On stability of shock waves in relativistic magnetohydrodynamics,” Quar. Appl. Math. 59, 25 (2001).

    Article  MathSciNet  Google Scholar 

  22. Y. Trakhinin, “A complete 2D stability analysis of fast MHD shocks in an ideal gas,” Comm. Math. Phys. 236, 65 (2003).

    Article  MathSciNet  Google Scholar 

  23. Y. Trakhinin, “On existence of compressible current-vortex sheets: variable coefficients linear analysis,” Arch. Ration. Mech. Anal. 177, 331 (2005).

    Article  MathSciNet  Google Scholar 

  24. Y. Trakhinin, “The existence of current-vortex sheets in ideal compressible magnetohydrodynamics,” Arch. Ration. Mech. Anal. 191, 245 (2009).

    Article  MathSciNet  Google Scholar 

  25. Y. Trakhinin, “Local existence for the free boundary problem for nonrelativistic and relativistic compressible Euler equations with a vacuum boundary condition,” Commun. Pure Appl. Math. 62, 1551 (2009).

    Article  MathSciNet  Google Scholar 

  26. Y. Trakhinin, “On the well-posedness of a linearized plasma-vacuum interface problem in ideal compressible MHD,” J. Differential Equations 249, 2577 (2010).

    Article  MathSciNet  Google Scholar 

  27. Y. Trakhinin, “On well-posedness of the plasma-vacuum interface problem: The case of non-elliptic interface symbol,” Commun. Pure Appl. Anal. 15, 1371 (2016).

    Article  MathSciNet  Google Scholar 

  28. A. I. Vol’pert and S. I. Hudjaev, “On the Cauchy problem for composite systems of nonlinear differential equations,” Mat. Sbornik 87, 504 (1972) [Math. USSR, Sbornik 16, 517 (1973)].

    MathSciNet  Google Scholar 

Download references

Funding

This work was supported by Mathematical Center in Akademgorodok and by the Russian Foundation for Basic Research (grant No. 19-01-00261-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. L. Trakhinin.

Additional information

Russian Text © The Author(s), 2019, published in Matematicheskie Trudy, 2019, Vol. 22, No. 2, pp. 175–209.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trakhinin, Y.L. Local Existence of Contact Discontinuities in Relativistic Magnetohydrodynamics. Sib. Adv. Math. 30, 55–76 (2020). https://doi.org/10.3103/S1055134420010058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1055134420010058

Keywords

Navigation