Skip to main content
Log in

Stability and supercritical behavior of large-size tankers for transportation of loose goods

  • Mechanics of Machines
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

The numerical analysis of the processes of elastic–plastic deformation and limit states of shell structures of large-size tankers filled with loose goods upon bending in the course of unloading is conducted. The solution of a three-dimensional geometrically and physically nonlinear problem is based on the finite element method and explicit scheme of integration in time of the “cross” type. A critical load at which the tanker losses its stability is defined. The influence of the load, internal pressure, and length of the tanker on stability is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrosimov, N.A. and Bazhenov, V.G., Nelineinye zadachi dinamiki kompozitnykh konstruktsii (Nonlinear Dynamical Problems for Composite Structures), Nizhny Novgorod: Nizhny Novgorod State Univ., 2002.

    Google Scholar 

  2. Vol’mir, A.S., Ustoichivost’ deformiruemykh sistem (Deformed Systems Stability), Moscow: Fizmatgiz, 1967.

    Google Scholar 

  3. Vorovich, I.I., Matematicheskie problemy nelineinoi teorii pologikh obolochek (Mathematical Problems of Nonlinear Theory of Gently Sloping Shells), Moscow: Nauka, 1989.

    Google Scholar 

  4. Grigolyuk, E.I. and Kabanov, V.V., Ustoichivost’ obolochek (Shells’ Stability), Moscow: Nauka, 1978.

    Google Scholar 

  5. Gudramovich, V.S., Ustoichivost’ uprugoplasticheskikh obolochek (Stability of Elastoplastic Shells), Kiev: Naukova Dumka, 1987.

    Google Scholar 

  6. Zheleznov, L.P. and Kabanov, V.V., Stability of round cylindrical shell under force bending through linings, Prikl. Mekh., 1989. no. 25, pp. 8–15.

    Google Scholar 

  7. Boiko, D.V., Zheleznov, L.P., and Kabanov, V.V., Nonlinear deformation and stability of discrete forced elliptic cylindrical shells under lateral bending, Prikl. Mekh. Tekh. Fiz., 2012. vol. 53, no. 2, pp. 111–114.

    Google Scholar 

  8. Boiko, D.V., Zheleznov, L.P., and Kabanov, V.V., Nonlinear deformation and stability of some cylindrical shells under lateral bending, Izv. Ross. Akad. Nauk. Mekhan. Tverd. Tela, 2012. no. 2, pp. 59–67.

    Google Scholar 

  9. PC Software Certificate no. 325, 18.04.2013.

  10. PC Software Certificate no. ROSS RU.ME20.H00338.

  11. Bazhenov, V.G., Kibets, A.I., Petrov, M.V., Fedorova, T.G., et al., Experimental-theoretical research of nonlinear deformation and stability loss for shells of revolution under bending, in Problemy prochnosti i plastichnosti (Problems of Strength and Plasticity), Nizhny Novgorod: Nizhny Novgorod State Univ., 2010. issue 72, pp. 80–85.

    Google Scholar 

  12. Pozdeev, A.A., Trusov, P.V., and Nyashin, Yu.I., Bol’shie uprugoplasticheskie deformatsii: teoriya, algoritmy, prilozheniya (Great Elastic-Plastic Deformations: Theory, Algorithms, Applications), Moscow: Nauka, 1986.

    Google Scholar 

  13. Korobeinikov, S.N., Nelineinoe deformirovanie tverdykh tel (Solids Nonlinear Deformation), Novosibirsk: Siberian Branch RAS, 2000.

    Google Scholar 

  14. Bazhenov, V.G. and Kibets, A.I., Numerical simulation of 3D problems of nonstationary deformation of elasticplastic structures by means of finite element method, Izv. Akad. Nauk. Mekhan. Tverd. Tela, 1994. no. 10, pp. 52–57.

    Google Scholar 

  15. Artem’eva, A.A., Bazhenov, V.G., Kibets, A.I., Laptev, P.V., and Shoshin, D.V., The way to verify finite element solution for 3D nonstationary problems of shells’ elastic plastic deformation, stability and overcritical behavior, Vychislitel. Mekhan. Sploshn. Sred, 2010. vol. 3, no. 2, pp. 5–14.

    Google Scholar 

  16. Bazhenov, V.G., Kibets, A.I, and Tsvetkova, I.N., Numerical simulation of nonstationary processes of impact interaction of deformed structure elements, Probl. Mashinostr. Nadezhn. Mash., 1995. no. 2, pp. 20–26.

    Google Scholar 

  17. Bathe, K.-Y., Finite Element Procedures, Upper Saddle River, NJ: Prentice Hall, 1996.

    Google Scholar 

  18. Belytschko, T., Liu, W.K., and Moran, B., Nonlinear Finite Elements for Continua and Structures, New York: John Wiley & Sons, 2000.

    MATH  Google Scholar 

  19. Golovanov, A.I., Tyuleneva, O.N., and Shigabutdinov, A.F., Metod konechnykh elementov v statike i dinamike tonkostennykh konstruktsii (Finite Element Method in Static and Dynamics of Thin Walled Structures), Moscow: Fizmatlit, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Bazhenov.

Additional information

Original Russian Text © V.G. Bazhenov, E.G. Gonik, A.I. Kibets, M.V. Petrov, T.G. Fedorova, 2015, published in Problemy Mashinostroeniya i Nadezhnosti Mashin, 2015, No. 5, pp. 34–40.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazhenov, V.G., Gonik, E.G., Kibets, A.I. et al. Stability and supercritical behavior of large-size tankers for transportation of loose goods. J. Mach. Manuf. Reliab. 44, 422–427 (2015). https://doi.org/10.3103/S1052618815050039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618815050039

Keywords

Navigation