Skip to main content
Log in

Mathematical Model of the Movement of Charge Layers and Melt Accumulation in a Blast Furnace Hearth

  • Published:
Steel in Translation Aims and scope

Abstract

Development results of mathematical models for the movement of layers of blast-furnace charge and the melt accumulation of liquid smelting products in the blast furnace hearth are presented. Movement of layers of iron ore materials and coke is modeled along the working space height, taking into account the given ore load in equal-sized annular blast furnace zones. Model provides for the adjustment of masses and volumes of cast iron and slag melts in accordance with changing melting conditions—blast consumption, natural gas, oxygen concentration in the blast, changing coke specific consumption. The developed mathematical models make it possible to evaluate the dynamics of changes in the configuration of blast-furnace charge layers along the working space height, as well as the melt accumulation process in the blast furnace hearth, using really available information about the operating furnace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Sibagatullin, S.K., Makhmutov, R.F., Sibagatullina, M.I., Starodubov, V.A., and Buranova, E.F., On the optimal distribution of materials in the blast furnace space of the blast furnace, Teoriya Tekhnol. Metall. Proizvod., 2014, no. 2, pp. 31–34.

  2. Sibagatullin, S.K., Formirovanie sloya shikhty v koloshnikovom prostranstve pechi. Ucheb. posobie (Formation of Layer of Charge in Throat Section of Furnace), Magnitogorsk: Magnitogorsk. Gos. Tekh. Univ., 2014.

  3. Tovarovskii, I.G., Predictive assessment of the effect of the radial charge-material distribution in the top of a blast furnace on the smelting indices, Metallurgist, 2014, vol. 58, nos. 7–8, pp. 648–654. https://doi.org/10.1007/s11015-014-9971-6

    Article  Google Scholar 

  4. Bolshakov, V.I., Semenov, Yu.S., Ivancha, N.G., Vishnyakov, V.I., Shumelchik, E.I., Podkorytov, A.L., Semion, I.Y., Kuznetsov, A.M., and Zubenko, A.V., Study of the flow of burden materials and their distribution on the furnace top of a modern blast furnace, Metall. Min. Ind., 2012, no. 3, pp. 158–165.

  5. Bol’shakov, V.I., Tovarovskii, I.G., Gladkov, N.A., and Shutylev, F.M., Distribution of materials over the radius of the furnace top and development of heat and mass transfer processes and phase transformations in the bulk of blast furnace, Chern. Metall. Byull. Nauchn.-Tekh. Inf., 2008, no. 3, pp. 22–34.

  6. Tarasov, P.V., Distribution of materials and gases over the circle of blast furnace, Izv. Vyssch. Uchebn. Zaved., Chern. Metall., 2007, vol. 55, no. 7, pp. 17–22.

    Google Scholar 

  7. Kaoru, N., Sunahara, K., and Inada, T., Advanced supporting system for burden distribution control at blast furnace top, ISIJ Int., 2010, vol. 50, no. 7, pp. 994–999. https://doi.org/10.2355/isijinternational.50.994

    Article  Google Scholar 

  8. Teng, Z., Cheng, S., Du, P., and Guo, X., Mathematical model of burden distribution for the bell-less top of a blast furnace, Int. J. Miner., Metall., Mater., 2013, vol. 20, no. 7, pp. 620–626. https://doi.org/10.1007/s12613-013-0775-7

    Article  Google Scholar 

  9. Watakabe, S., Takeda, K., Nishimura, H., Goto, S., Nishimura, N., Uchida, T., and Kiguchi, M., Development of high ratio coke mixed charging technique to the blast furnace, ISIJ Int., 2006, vol. 46, no. 4, pp. 513–522. https://doi.org/10.2355/isijinternational.46.513

    Article  CAS  Google Scholar 

  10. Bol’shakov, V.I., Tekhnologiya vysokoeffektivnoi energosberegayushchei domennoi plavki (Technology of High-Effective Energy-Saving Blast-Furnace Smelting), Kiev: Naukova Dumka, 2007.

  11. Tovarovskii, I.G., Domennaya plavka. Monografiya (Blast-Furnace Smelting: Monograph), Dnepropetrovsk: Porogi, 2009.

  12. Babarykin, N.N., Teoriya i tekhnologiya domennogo protsessa (Theory and Technology of Blast-Furnace Process), Magnitogorsk: Magnitogorsk. Gos. Tekh. Univ., 2009.

  13. Cameron, I., Sukhram, M., Lefebvre, K., and Davenport, W., Blast Furnace Ironmaking: Analysis, Control and Optimization, Elsevier, 2019. https://doi.org/10.1016/C2017-0-00007-1

    Book  Google Scholar 

  14. Bol’shakov, V.I., Murav’eva, I.G., and Semenov, Yu.S., Prediction of thermal state of the blast-furnace well, Stal’, 2009, no. 5, pp. 7–9.

  15. Spirin, N.A., Lavrov, V.V., Rybolovlev, V.Yu., et al., Matematicheskoe modelirovanie metallurgicheskikh protsessov v ASU TP (Mathematical Modeling of Metallurgical Processes in Process Control System), Spirin, N.A., Ed., Ekaterinburg: Ural. Fed. Univ., 2014. https://elar.urfu.ru/handle/10995/27839.

    Google Scholar 

  16. Spirin, N.A., Lavrov, V.V., Rybolovlev, V.Yu., et al., Model’nye sistemy podderzhki prinyatiya reshenii v ASU TP domennoi plavki. Monografiya (Model Systems of Decision Making Support in Process Control Systems of Blast-Furnace Smelting: Monograph), Spirin, N.A., Ed., Ekaterinburg: Ural. Fed. Univ., 2011. http://hdl.handle.net/10995/39973.

    Google Scholar 

  17. Onorin, O.P., Spirin, N.A., Terent’ev, V.L., et al., Komp’yuternye metody modelirovaniya domennogo protsessa / pod red (Computer Methods for Modeling the Blast-Furnace Process), Spirin, N.A., Ed., Ekaterinburg: Ural. Gos. Tekh. Univ.-Ural. Politekh. Inst., 2005.

    Google Scholar 

  18. Yaroshenko, Yu.G., Shvydkii, V.S., Spirin, N.A., et al., Teplofizicheskie osnovy teplovoi raboty metallurgicheskikh sloevykh pechei i agregatov (Thermophysical Foundations of Thermal Work of Metallurgical Layer Furnaces and Aggregates), Yaroshenko, Yu.G., Ed., Ekaterinburg: Den’ RA, 2019. http://hdl.handle.net/10995/78843.

  19. Gordon, Y., Izumskiy, N., and Matveienko, G., Diagnostics, optimization and mathematical models of coke-sinter-hot metal production process, AISTech 2019–Proc. Iron & Steel Technology Conference, 2019, pp. 479–484. https://doi.org/10.33313/377/050

    Book  Google Scholar 

  20. Kaplun, L.I., Malygin, A.V., Onorin, O.P., and Parkhachev, A.V., Ustroistvo i proektirovanie domennykh pechei. Ucheb. posobie (Device and Design of Blast Furnaces: Textbook), Ekaterinburg: Ural. Fed. Univ., 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Lavrov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Selikhanovich

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onorin, O.P., Spirin, N.A., Lavrov, V.V. et al. Mathematical Model of the Movement of Charge Layers and Melt Accumulation in a Blast Furnace Hearth. Steel Transl. 53, 439–444 (2023). https://doi.org/10.3103/S0967091223050121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091223050121

Keywords:

Navigation