Skip to main content
Log in

Polytherms of the physical properties of metallic melts

  • Published:
Steel in Translation Aims and scope

Abstract

The temperature dependence of the kinematic viscosity, electrical resistivity, surface tension, and density of liquid steels and alloys on heating and subsequent cooling is analyzed. On that basis, the polytherms of the physical properties of steels and alloys are systematized. On heating to certain critical temperatures, changes occur in the structure of the melt. Consequently, the cooling polytherms take a form more closely resembling the equilibrium classical laws and do not match the heating polytherms. Branching or hysteresis of the temperature dependences is only irreversible on heating to critical temperatures. Otherwise, partial or complete return to the primary melt structure is possible. That affects the degree of hysteresis of the polytherms. The degree of hysteresis and the data regarding the properties provide qualitative information regarding the transition of the melt structure from the equilibrium to the microhomogeneous state. The uniformity of the distribution of atoms of the alloying elements in microgroupings or clusters indicates the equilibrium of the structure, while the uniformity of the distribution of clusters that differ in structure over the melt volume reflects structural microhomogeneity. Data on the properties of multicomponent metals indicate that, after melting, the variation in melt properties on isothermal holding takes the form of familiar damping oscillations. With increase in temperature, the damping becomes aperiodic, and the relaxation time declines. The processes responsible for the isothermal variation in melt properties occur at the microscopic level. Nonequilibrium industrial metal usually contains inclusions inherited from the initial materials, such as insoluble graphite particles in the cast iron or associations and aggregations of carbide and nitride type. The melt takes a long time to reach equilibrium—usually longer than the time for diffusional mixing of the atoms within the nonequilibrium regions. With more complex chemistry and structure of the solid metal, the distance of the melt from equilibrium will be greater. In this system, new correlations are formed and broken more intensely. Cooperative interactions of the new spatial and time structures with those inherited from the initial materials occur here, as indicated by oscillating behavior of the properties of the metallic melts. Information regarding the state of the melt before solidification permits scientific analysis of the melting points and melting times of the steels and alloys. Such preparation of the melt affects its supercooling, its solidification rate, the formation of hardening phases and eutectics, the segregation of the elements, the dendrite and zonal; structure of the castings, and the overall product quality and production efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elanskii, G.N., Minchevskii, B.V., and Kal’menev, A.A., Osnovy proizvodstva i obrabotki metallov (Fundamentals of Production and Processing of Metals), Moscow: Mosk. Gos. Vechern. Metall. Inst., 2005.

    Google Scholar 

  2. Elanskii, G.N., Stal’ i periodicheskaya sistema elementov D.I. Mendeleeva (Steel and Mendeleev’s Periodic Table of the Elements), Moscow: Mosk. Gos. Vechern. Metall. Inst., 2011.

    Google Scholar 

  3. Tsong, T.T., Atom-Probe Field Ion Microscope, Cambridge: Cambridge Univ. Press, 1990.

    Book  Google Scholar 

  4. Miller, M., Cerezo, A., Hetherington, M., and Smith, G., Atom-Probe Field Ion Microscope, Vol. 52: Monographs on the Physics and Chemistry of Materials, Oxford: Oxford Univ. Press, 1996.

    Google Scholar 

  5. Miller, M., Atom-Probe Tomography, New York: Springer-Verlag, 2000.

    Book  Google Scholar 

  6. Michael, K., Miller, M., and Richard, G., Forbes Atom- Probe Tomography the Local Electrode Atom-Probe, New York: Springer-Verlag, 2014.

    Google Scholar 

  7. Larson, D.J., Prosa, T.J., Ulfig, R.M., Geiser, B.P., and Kelly, T.F., Local Electrode Atom-Probe Tomography a User’s Guide, New York: Springer, 2013.

    Book  Google Scholar 

  8. Kellogg, G.L., Measurement of activation energies for field evaporation of tungsten ions as a function of electric field, Phys. Rev. B, 1984, vol. 29, no. 8, pp. 4304–4312.

    Article  Google Scholar 

  9. Wada, M., On the thermally activated field evaporation of Surface atoms, Surf. Sci., 1984, vol. 145, pp. 451–465.

    Article  Google Scholar 

  10. Menand, A. and Blavette, D., Temperature dependence of iridium field evaporation rate, J. Phys. C, 1986, vol. 47, no. 7, pp. 17–20.

    Google Scholar 

  11. Saxey, D.W., Correlated ion analysis and the interpretation of atom probe mass spectra, Ultramicroscope, 2011, vol. 111, no. 6, pp. 473–479.

    Article  Google Scholar 

  12. Shaburova, N.A., Theory and practice of using external actions for melts processing, Vestn. Yuzh.-Ural. Gos. Univ., Ser. Metall., 2013, vol. 13, no. 1, pp. 85–90.

    Google Scholar 

  13. Tsepelev, V.S., Konashkov, V.V., Baum, B.A., Tyagunov, G.V., and Baryshev, E.E., Svoistva metallicheskikh rasplavov (The Properties of Metal Melts), Yekaterinburg: Ural. Gos. Tekh. Univ., 2008, in 2 parts.

    Google Scholar 

  14. Baryshev, E.E., Tyagunov, A.G., and Stepanova, N.N., Vliyanie struktury rasplava na svoistva zharoprochnykh nikelevykh splavov v tverdom sostoyanii (Effect of Melt Structure on the Properties of Heat Resistant Solid Nickel Alloys), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 2010.

    Google Scholar 

  15. Tyagunov, G.V., Baryshev, E.E., and Tsepelev, V.S., Zhidkii metal. Poroshki (Liquid Metal. Powders), Yekaterinburg: Ucheb.-Metod. Tsentr, Ural. Politekh. Inst., 2014.

    Google Scholar 

  16. Petrushin, N.V. and Svetlov, I.L., Physical-chemical and structural parameters of high-temperature nickel alloys, Metally, 2001, no. 2, pp. 63–73.

    Google Scholar 

  17. Elanskii, G.N. and Elanskii, D.G., Stroenie i svoistva metallicheskikh rasplavov (Structure and Properties of Metal Melts), Moscow: Mosk. Gos. Vechern. Metall. Inst., 2006.

    Google Scholar 

  18. Zuev, M.V., Burmasov, S.P., Stepanov, A.I., Gudov, A.G., Murzin, A.V., and Zheltukhin, E.G., Improvement in steel smelting by studying melt behavior, Steel Transl., 2013, vol. 43, no. 2, pp. 106–109.

    Article  Google Scholar 

  19. Polishchuk, A.D. and Polishchuk, D.A., Kompleksnoe otsenivanie v sistemnykh issledovaniyakh (Complex Evaluation in System Studies), Varna, 2013, vol. 1, pp. 368–370.

    Google Scholar 

  20. Kolotukhin, E.V., Improvement of the technology of smelting and improvement of the quality of high-temperature alloys on the basis of studies of their electrical resistivity, in Svoistva metallicheskikh rasplavov (The Properties of Metal Melts), Yekaterinburg: Ural. Gos. Tekh. Univ., 2008, part 2, pp. 113–122.

    Google Scholar 

  21. Li, P., Mi, C., Okhapkin, A.V., Konstantinova, N.Y., Sabirzianov, A.A., and Popel, P.S., Micro-mechanism for the evolution of viscosity versus temperature in magnesium-aluminum alloy melts, Procedia, 2012, vol. 27, pp. 871–879.

    Article  Google Scholar 

  22. Beltyukov, A.L., Menshikova, S.G., and Ladyanov, V.I., The viscosity of binary Al–Fe melts in the Al-rich area, J. Non-Cryst. Solids, 2015, vol. 410, pp. 1–6.

    Article  Google Scholar 

  23. Tret’yakova, E.E., Optimization technology of smelting and improvement of the quality of chromium steels based on analysis of the surface tension of their melts, Extended Abstract of Cand. Sci. (Tech.) Dissertation, Sverdlovsk: Ural. Politekh. Inst., 1986.

    Google Scholar 

  24. Popel’, P.S., Metastable micro-heterogeneity of melts in systems with eutectic and monotectic and its effect on the alloy structure after solidification, Rasplavy, 2005, no. 1, pp. 22–48.

    Google Scholar 

  25. Popel, P.S., Chikova, O.A., and Matveev, V.M., Metastable colloidal states of liquid metallic solutions, High Temp. Mater. Process., 1995, vol. 14, no. 4, pp. 219–234.

    Article  Google Scholar 

  26. Brodova, I.G., Popel, P.S., and Eskin, G.I., Liquid Metal Processing: Applications to Aluminium Alloy Production, London: Taylor and Francis, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Tyagunov.

Additional information

Original Russian Text © A.G. Tyagunov, E.E. Baryshev, G.V. Tyagunov, V.S. Mushnikov, V.S. Tsepelev, 2017, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Chernaya Metallurgiya, 2017, No. 4, pp. 310–317.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagunov, A.G., Baryshev, E.E., Tyagunov, G.V. et al. Polytherms of the physical properties of metallic melts. Steel Transl. 47, 250–256 (2017). https://doi.org/10.3103/S096709121704012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S096709121704012X

Keywords

Navigation