Skip to main content
Log in

Decarburization of high-chromium melts by argon–oxygen plasma

  • Published:
Steel in Translation Aims and scope

Abstract

The treatment of Fe–Cr and Fe–Cr–Ni alloys by means of oxygen-bearing plasma is investigated in the laboratory, using a plasma furnace with a tungsten cathode and a water-cooled copper anode. That permits modeling of the processes in the contact spot of the plasma arc and the melt surface. The mathematical model developed describes the melt–plasma interaction. The kinetic parameters of the decarburization of high-chromium melt by argon–oxygen plasma are determined from experimental data. The results show that considerable decarburization of high-chromium melt is possible, with little loss of chromium, by treatment with plasma containing no more than 15–17% oxygen. Comparison shows that the model data and experimental results are in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gol’dshtein, M.I., Grachev, S.V., and Veksler, Yu.G., Spetsial’nye stali (Special Steel), Moscow: Mosk. Inst. Stalei Splavov, 1999.

    Google Scholar 

  2. Tufanov, D.G., Korrozionnaya stoikost’ nerzhaveyushchikh stalei, splavov i chistykh metallov (Corrosion Resistance of Stainless Steels, Alloys, and Pure Metals), Moscow: Metallurgiya, 1982.

    Google Scholar 

  3. Babakov, A.A. and Pridantsev, M.V., Korrozionnostoikie stali i splavy (Corrosion-Resistant Steels and Alloys), Moscow: Metallurgiya, 1971.

    Google Scholar 

  4. Rimkevich, V.S., Sisev, A.A., Muruev, S.V., and Blokhin, M.V., Opportunities for improvement of the traditional smelting of stainless steels, Chern. Metall., 2012, no. 8, pp. 23–28.

    Google Scholar 

  5. Grigoryan, V.A., Belyanchikov, L.N., and Stomakhin, A.Ya., Teoreticheskie osnovy elektrostaleplavil’nykh protsessov (Theoretical Foundations of EAF Processes), Moscow: Metallurgiya, 1987.

    Google Scholar 

  6. Zhovtyanskii, V.A., Electric arc—the basis of thermal plasma applications. Part I. General properties of the plasma arc and heat transfer characteristics of the processes, Prom. Teplotekh., 2007, vol. 29, no. 4, pp. 13–22.

    Google Scholar 

  7. Cherednichenko, V.S., Kuz’min, M.G., and An’shakov, A.S., Plasma plants for the melting and reduction of metals, Russ. Metall. (Engl. Transl.), 2010, vol. 2010, no. 6, pp. 510–516.

    Article  Google Scholar 

  8. Laktionov, A.E., Stomakhin, A.Ya., Grigoryan, V.A., et al., Temperature of the metal surface at plasma melt-ing, Izv. Vyssh. Ucheb. Zaved., Chern. Metall., 1979, no. 7, pp. 49–52.

    Google Scholar 

  9. Komolova, O.A., Modeling of the components interaction of slag and metal phases in the production of steel, development of algorithms and software for the processes description, Extended Abstract of Cand. Sci. (Tech.) Dissertation, Moscow: Moscow Inst. Steel Alloys, 2014.

    Google Scholar 

  10. Klyuev, M.M., Plazmenno-dugovoi pereplav (Plasma-Arc Remelting), Moscow: Metallurgiya, 1980.

    Google Scholar 

  11. Farnasov, G.A., Fridman, A.G., and Karinskii, V.N., Plazmennaya plavka (Plasma Melting), Moscow: Metallurgiya, 1968.

    Google Scholar 

  12. Trusov, B.G., TERRA software system for the simulation of chemical and phase equilibriums in plasmachemical processes, Mater. III mezhd. simp. po teoreticheskoi i prikladnoi plazmokhimii (Proc. III Int. Symp. on Theoretical and Applied Plasma Chemistry), Ivanovo, 2002, pp. 217–220.

    Google Scholar 

  13. Yavoiskii, V.I., Teoriya protsessov proizvodstva stali (Theory of Steel Production), Moscow: Metallurgiya, 1967.

    Google Scholar 

  14. Fischer, W.A., Janke, D., and Stahlschmidt, K., Die Verdampfung von Eisen und seiner Begleitelemente Kupfer und Manganbeim Schwebe schmelzen unter vermindertem Druck, Arch. Eisenhüttenwes., 1974, vol. 45, no. 11, pp. 757–764.

    Article  Google Scholar 

  15. Karasev, R.A., Kinetics and mechanism of interaction of liquid ironcarbon melts with the gas phase CO–CO2, in Kinetika i termodinamika vzaimodeistviya gazov s zhidkimi metallami (Kinetics and Thermodynamics of the Interaction of Gases with Liquid Metals), Moscow: Nauka, 1974, pp. 82–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Rumyantsev.

Additional information

Original Russian Text © B.A. Rumyantsev, O.A. Komolova, K.V. Grigorovich, A.K. Garber, Ya.I. Tabakov, 2016, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Chernaya Metallurgiya, 2016, No. 9, pp. 656–662.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumyantsev, B.A., Komolova, O.A., Grigorovich, K.V. et al. Decarburization of high-chromium melts by argon–oxygen plasma. Steel Transl. 46, 638–643 (2016). https://doi.org/10.3103/S0967091216090096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091216090096

Keywords

Navigation