Skip to main content
Log in

The development of new metallurgical materials and technologies. Part 2. Powder nanomaterials

  • Published:
Steel in Translation Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Methods of producing nanopowders and consolidated powder nanomaterials are reviewed. Various methods of nanopowder production are analyzed, and the properties of nanopowders are presented. Consolidation of nanopowders by pressing, sintering, and pressure sintering is discussed. The properties of consolidated powder nanomaterials are presented. The prospects for their application as constructional, functional, and high-energy materials are assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuznetsov, N.T., Novotortsev, V.M., Zhabrev, V.A., and Margolin, V.I., Osnovy nanotekhnologii (Fundamentals of Nanotechnology), Moscow: BINOM, Laboratoriya Znanii, 2014.

    Google Scholar 

  2. Alymov, M.I., Poroshkovaya metallurgiya nanokristallicheskikh materialov (Powder Metallurgy of Nanocrystalline Materials), Moscow: Nauka, 2007.

    Google Scholar 

  3. Alymov, M.I., Shustov, V.S., Ustyukhin, A.S., and Evstratov, E.V., Correlation between the quality of nanopowders and productivity rate for fabrication technology of them, Kompoz. Nanostrukt., 2012, no. 3, pp. 5–9.

    Google Scholar 

  4. Leont’ev, L.I., Grigorovich, K.V., and Kostina, V.M., The development of new metallurgical materials and technologies. Part 1, Steel Transl., 2016, vol. 46, no. 1, pp. 6–15.

    Article  Google Scholar 

  5. Zakorzhevskii, V.V. and Borovinskaya, I.P., Combustion synthesis of submicron AlN particles, Inorg. Mater., 2015, vol. 51, pp. 566–571.

    Article  Google Scholar 

  6. Chevykalova, L.A., Kelina, I.Yu., Mikhal’chik, I.L., Plyasunkova, L.A., Arakcheev, A.V., Zakorzhevskii, V.V., and Loryan, V.É., Ceramic material based on domestic silicon nitride powder prepared by an SHS method, Refract. Ind. Ceram., 2015, vol. 55, no. 5, pp. 403–408.

    Article  Google Scholar 

  7. Borovinskaya, I.P., Ignat’eva, T.I., Semenova, V.N., and Chemagina, E.A., Aluminum oxynitride by SHS in chemical furnace, Int. J. Self-Propag. High-Temp. Synth., 2015, vol. 24, no. 3, pp. 142–147.

    Article  Google Scholar 

  8. Borovinskaya, I.P., Barinova, T.V., and Ignat’eva, T.I., SHS of ultrafine and nanosized Si3N4 powders. Influence of inorganic and organic additives on product microstructure, morphology and phase composition, Nanotechnol. Russ., 2015, vol. 10, no. 9, pp. 763–776.

    Article  Google Scholar 

  9. Mukasyan, A.S., Rogachev, A.S., and Aruna, S.T., Combustion synthesis in nanostructured reactive systems, Adv. Powder Technol., 2015, vol. 26, no. 3, pp. 954–976.

    Article  Google Scholar 

  10. Nanostructured Materials: Processing, Properties, and Potential Applications, Koch, C.C., Ed., Norwich, NY: Noyes, 2002.

    Google Scholar 

  11. Hayashi, K. and Eto, H., Pressure-sintering of iron, cobalt, nickel and copper ultrafine powders and the crystal grain size and hardness of the compacts, J. Jpn. Inst. Met., 1989, vol. 53, no. 2, pp. 221–226.

    Google Scholar 

  12. Berbentsev, V.D., Alymov, M.I., and Bedov, S.S., Nanopowder consolidation by gas extrusion method, Ross. Nanotekhnol., 2007, nos. 7–8, pp. 116–120.

    Google Scholar 

  13. Vaganov, V.E., Aborkin, A.V., Alymov, M.I., and Berbentsev, V.D., State of the art and the prospects of hightemperature gas extrusion to produce thin-section rods made of hard-to-deform, including nanostructured alloys, Russ. Metall. (Metally), 2015, no. 9, pp. 732–738.

    Article  Google Scholar 

  14. Langlois, C., Hytch, M.J., Langlois, P., Lartigue-Korinek, S., and Champion, Y., Synthesis and microstructure of bulk nanocrystalline copper, Metall. Mater. Trans. A, 2005, vol. 36, pp. 3451–3460.

    Article  Google Scholar 

  15. Bazhin, P.M., Stolin, A.M., Alymov, M.I., and Chizhikov, A.P., Peculiarities of the production of elongated items from a ceramic material with nanoscale structure by the SHS extrusion method, Inorg. Mater.: Appl. Res., 2015, vol. 6, no. 2, pp. 187–192.

    Article  Google Scholar 

  16. Griffith, A.A., The phenomena of rupture and flow in solids, Phil. Trans. R. Soc. A, 1921, vol. 221, pp. 163–198.

    Article  Google Scholar 

  17. Lashmore, D.S., Jesser, W.A., Schladitz, D.M., Schladitz, H.J., and Wilsdorf, H.G.F., Microstructural investigation of polycrystalline iron whiskers, J. Appl. Phys., 1977, vol. 48, pp. 478–481.

    Article  Google Scholar 

  18. Lyakishev, N.P. and Alymov, M.I., Poluchenie i fizikomekhanicheskie svoistva obemnykh nanokristallicheskikh materialov (Production and Physicomechanical Properties of Bulk Nanocrystalline Materials), Moscow: ELIZ, 2007.

    Google Scholar 

  19. Solntsev, K.A., Investigations of nanomaterials and nanotechnologies performed at the Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Nanotekhnol. Ekol. Proizvod., 2010, no. 4, pp. 4–6.

    Google Scholar 

  20. Andrievski, R.A. and Khatchoyan, A.V., Nanomaterials in Extreme Environments. Fundamentals and Applications, Springer Ser. Mater. Sci., New York: Springer-Verlag, 2016, vol. 230.

  21. Tsvetkov, Yu.V., Samokhin, A.V., and Nikolaev, A.V., Plasma processes in metallurgy and material treatment, in Sbornik nauchnykh trudov Institut metallurgii i materialovedeniya im. A.A. Baikova RAN-75 let (Collection of Scientific Works Dedicated to the 75th Anniversary of the Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences), Solntsev, K.A., Ed., Moscow: Interkontakt Nauka, 2013, vol. 792, pp. 512–528.

    Google Scholar 

  22. Zaitsev, A.A., Vershinnikov, V.I., Konyashin, I., Levashov, E.A., Borovinskaya, I.P., and Ries, B., Cemented carbides from WCpowders obtained by the SHS method, Mater. Lett., 2015, vol. 158, no. 1, pp. 329–332.

    Article  Google Scholar 

  23. Shcherbakov, V.A., Gryadunov, A.N., Sachkova, N.V., and Samokhin, A.V., Combustion synthesis of composites based on titanium and chromium borides, Pis’ma Mater., 2015, vol. 5, no. 1, pp. 20–23.

    Google Scholar 

  24. Alymov, M.I., Evstratov, E.V., Ankudinov, A.B., Zelensky, V.A., Golosova, O.A., and Kolobova, A.Yu., Preparation, structure and properties of porous materials based on titanium, Inorg. Mater.: Appl. Res., 2016, vol. 7, no. 3, pp. 425–428.

    Article  Google Scholar 

  25. Alymov, M.I., Bakunova, N.V., Barinov, S.M., Belunik, I.A., Fomin, A.S., Ievlev, V.M., and Soldatenko, S.A., Specific features of the densification of hydroxyapatite nanopowders upon pressing, Nanotechnol. Russ., 2011, vol. 6, nos. 5–6, pp. 353–356.

    Article  Google Scholar 

  26. Mukasyan, A.S., Lin, Y.-C., Rogachev, A.S., and Moskovskikh, D.O., Direct combustion synthesis of silicon carbide nanopowder from the elements, J. Am. Ceram. Soc., 2013, vol. 96, no. 1, pp. 111–117.

    Article  Google Scholar 

  27. Kurchatov, I.M., Laguntsov, N.I., Uvarov, V.I., and Kurchatova, O.V., Asymmetric gas transport: composite porous ceramic membranes, Int. J. Appl. Eng. Res., 2015. vol. 10, no. 20, pp. 40939–40945.

    Google Scholar 

  28. Shevchenko, V.Ya. and Mackay, A.L., Geometrical principles of the self-assembly of nanoparticles, Glass Phys. Chem., 2008, vol. 34, no. 1, pp. 8–15.

    Article  Google Scholar 

  29. Zaitsev, A.A., Sentyurina, Zh.A., Pogozhev, Yu.S., Levashov, E.A., Sanin, V.N., Yukhvid, V.I., Andreev, D.E., Mikhailov, M.A., and Kaplanskii, Yu.Yu., Fabrication of cast electrodes from nanomodified nickel aluminide-based high-boron alloy to fabricate spherical powders using the plasma rotating electrode process, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 2015, no. 4, pp. 15–24.

    Article  Google Scholar 

  30. Zelepugin, S.A., Dolgoborodov, A.Yu., Ivanova, O.V., and Zelepugin, A.S., Udarno-volnovoi sintez v tverdykh smesyakh. Monografiya (Shockwave Sintering in Solid Mixtures: Monograph), Tomsk: Inst. Opt. Atmos., Sib. Otd., Ross. Akad. Nauk, 2012.

    Google Scholar 

  31. Imkhovik, N.A., Selivanov, V.V., Simonov, A.K., Sergeeva, A.I., and Yashin, V.B., About the abroad development research of new “high-density reactive materials” and its appliance in high-lethality ammunition, Vooruzhenie Ekon., 2014, no. 1 (26), pp. 53–63.

    Google Scholar 

  32. Ul’tradispersnye i nanorazmernye poroshki: sozdanie, stroenie, proizvodstvo i primenenie (Ultrafine and Nanosized Powders: Synthesis, Structure, Production, and Appli cation), Buznik, V.M., Ed., Tomsk: Izd. Nauchno-Tekh. Liter., 2009.

    Google Scholar 

  33. Advanced Energetic Materials Committee on Advanced Energetic Materials and Manufacturing Technologies, Washington, DC: Natl. Res. Counc., 2004.

  34. Ames, R.G., A standardized evaluation technique for reactive warhead fragments, Proc. 23d Int. Symp. on Ballistics, Tarragona, Spain, April 16–20, 2007.

    Google Scholar 

  35. Wang, H., Liu, Z., Wang, H., and Yu, W., Impact initiated characteristics of reactive material fragments, Proc. 2007 Int. Autumn Seminar on Propellants, Explosives, and Pyrotechnics. Xi’an, Shaanxi, China, October 23–26, 2007.

    Google Scholar 

  36. Rosencrantz, S.D., Characterization and modeling methodology of polytetrafluoroethylene based reactive materials for the development of parametric models, MSc Thesis, Dayton: Wright State Univ., 2007.

    Google Scholar 

  37. Nicolich, S., Energetic materials to meet warfighter requirements: an overview of selected USArmy RDECOM-ARDEC Energetic Materials Programs, Proc. 42nd Annual Armament Systems, Gun and Missile Systems Conf., 2007.

    Google Scholar 

  38. Daniels, A., Baker, E., and Ng, K., A unitary demolition warhead, 2003 Mines, Demolition and Non-Lethal Weapons Conf., New Orleans, LA,September 9–11, 2003.

    Google Scholar 

  39. Gotzmer, C., Amato, B., and Kim, S., Applications overview of reactive materials, National Capital Region Energetics Symp., La Plata, MD,April 27–28, 2009.

    Google Scholar 

  40. Zhang, F., Donahue, L., and Wilson, W.H., The effect of charge reactive structural metal cases on air blast, Proc. 14th Int. Detonation Symp., Coeur d’Alene, 2010.

    Google Scholar 

  41. Bless, S., Russell, R., and Pantoya, M., Advanced Energetic Materials for Agent Defeat: Impact-Driven Reactions in Biocidal Reactive Materials for WMD Applications, Annual Progress Report—HDTRA1-08-1-0013, Austin, TX: Inst. Adv. Technol, 2009.

    Google Scholar 

  42. Kablov, E.N., Kondrashov, S.V., and Yurkov, G.Yu., Prospective applications of carbon-containing nanoparticles in binders for polymer composite materials, Nanotechnol. Russ., 2013, vol. 8, nos. 3–4, pp. 163–185.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Leont’ev.

Additional information

Original Russian Text © L.I. Leont’ev, M.I. Alymov, 2016, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Chernaya Metallurgiya, 2016, No. 5, pp. 306–313.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leont’ev, L.I., Alymov, M.I. The development of new metallurgical materials and technologies. Part 2. Powder nanomaterials. Steel Transl. 46, 313–318 (2016). https://doi.org/10.3103/S0967091216050089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091216050089

Keywords

Navigation