Skip to main content
Log in

Thermodynamic modeling of the interaction of high-level element and oxygen in iron-based melt

  • Published:
Steel in Translation Aims and scope

Abstract

The main reactions of calcium, cerium, lanthanum, silicon, and complex alloys with the active additive Ca–Si, Ca–Al, Ce–Si, La–Si, Ce–La, or Ce–Ca–Al are subjected to thermal analysis. On the basis of binary and ternary fusibility diagrams, the thermodynamic data are refined for the main reactions between complex alloys with rare-earth elements and the oxygen present in the liquid metal. Solubility surfaces are plotted for components of the Fe–Si–Ce–O, Fe–Si–La–O, Fe–Ce–La–O, and Fe–Ca–Al–Ce–O systems. From those diagrams, optimal compositions of complex alloys with rare-earth elements in terms of nonmetallic-inclusion formation are established by plotting the consumption of the active components. For each group of steels, the quantitative elementary composition of the active components used for reduction and modification of the nonmetallic inclusions must be calculated. The chemical and phase composition of the nonmetallic inclusions may be very complex even in the final stages of the reduction of oxides. A method is developed for taking account of the polyvalency of cerium in reduction processes. The thermodynamic data and diagrams obtained help provide a better understanding of the complex heterogeneous processes within multicomponent systems that contain liquid metals. In combination with experimental data for the solubility surfaces of the components and the consumption diagrams, it is possible to track the transitions from the nonequilibrium state of the metallurgical system to the equilibrium state. In other words, the degree of refining of the metal and the equilibrium composition of the nonmetallic inclusions may be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ryabchikov, I.V., Modifikatory i tekhnologii vnepechnoi obrabotki zhelezouglerodistykh splavov (Modifiers and Ladle Treatment of Ferrocarbon Alloys), Moscow: Ekomet, 2008.

    Google Scholar 

  2. Ryabchikov, I.V., Mizin, V.G., and Lyakishev, N.P., Ferrosplavy s redkozemel’nymi i shchelochnozemel’nymi metallami (Ferroalloys with Rare Earth and Alkaline Earth Metals), Moscow: Metallurgiya, 1983.

    Google Scholar 

  3. Mikhailov, G.G., Leonovich, B.I., and Kuznetsov, Yu.S., Termodinamika metallurgicheskikh protsessov i sistem (The Thermodynamics of Metallurgical Processes and Systems), Moscow: Nats. Issled. Technol. Inst. MISiS, 2009.

    Google Scholar 

  4. Mikhailov, G.G. and Antonenko, V.I., Termodinamika metallurgicheskikh shlakov: uchebnoe posobie (Thermodynamics of Metallurgical Slags: Manual), Moscow: Mosk. Inst. Stali Splavov, 2013.

    Google Scholar 

  5. Itskovich, G.M., Raskislenie stali i modifitsirovanie nemetallicheskikh vklyuchenii (Deoxidation of the Steel and Modification of Nonmetallic Inclusions), Moscow: Metallurgiya, 1981.

    Google Scholar 

  6. Sponseller, D.A. and Flinn, R.A., The solubility of calcium in liquid iron and third element interaction affect, Trans. AIME, 1964, vol. 230, pp. 876–887.

    Google Scholar 

  7. Ageev, Yu.A., Zaslavskii, A.Ya., Danilovich, Yu.A., et al., Conditions for formation, composition and properties of nonmetallic inclusions in calcium-containing steel, Izv. Akad. Nauk SSSR, Met., 1981, no. 5, pp. 15–21.

    Google Scholar 

  8. Morozov, A.N. and Stroganov, A.I., Raskislenie martenovskoi stali (Deoxidation Open-Hearth Steel), Moscow: Metallurgizdat, 1955.

    Google Scholar 

  9. Kulikov, I.S., Raskislenie metallov (Deoxidation of Metals), Moscow: Metallurgiya, 1975.

    Google Scholar 

  10. Kubaschewski, O. and Alcock, C.B., Metallurgical Thermochemistry, New York: Pergamon, 1979, 5th ed.

    Google Scholar 

  11. Povolotskii, D.Ya., Krichevets, M.I., and Kozheurov, V.A., Distribution of calcium between steel and slag containing two anions of two different valence, Izv. Akad. Nauk SSSR, Met., 1986, no. 2, pp. 5–8.

    Google Scholar 

  12. Shpitsberg, V.M., Grebtsov, Yu.G., Klyuev, N.N., et al., The reaction of aluminium and titanium dissolved in the nickel-chromium alloys with CaO–CaF2 slag at electroslag re-melting, Izv. Akad. Nauk SSSR, Met., 1969, no. 5, pp. 67–71.

    Google Scholar 

  13. Ershov, G.S. and Chernyakov, V.A., Vzaimodeistvie faz pri vyplavke legirovannykh stalei (The Interaction of Phases at the Melting of Alloy Steels), Moscow: Metallurgiya, 1973.

    Google Scholar 

  14. Ototani, T. and Katayra, J., Desoxidation and desulphurization of liquid steel with calcium complex alloys, Trans. ISIJ, 1972, vol. 12, no. 5, pp. 334–342.

    Google Scholar 

  15. Miyashita, Y., Nishikawa, K., and Nemoto, H., Concentration of calcium and oxygen in iron during deoxidation by calcium, in Vzaimodeistvie gazov s metallami (Interaction of Gases and Metals), Moscow: Nauka, 1973, pp. 50–59.

    Google Scholar 

  16. Kobayshi, S., Omori, Y., and Sanbongi, K., On the deoxidation of liquid iron with argon-calcium bubbles, Tetsu Hagane, 1970, vol. 56, no. 8, pp. 998–1013.

    Google Scholar 

  17. Berezhnoi, A.S., Mnogokomponentnye sistemy okislov (Multicomponent System of Oxides), Kiev: Naukova Dumka, 1970.

    Google Scholar 

  18. Kuznetsov, V.M. and Samarin, A.M., Deoxidizing ability of aluminium in liquid iron, in Fiziko-khimicheskie osnovy proizvodstva stali (Physical and Chemical Principles of Steel Production), Moscow: Akad. Nauk SSSR, 1961, pp. 11–17.

    Google Scholar 

  19. Yavoiskii, V.I., Vladimirov, L.P., Luzgin, V.P., et al., Investigation of iron deoxidation by the electromotive force method, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1971, no. 11, pp. 18–22.

    Google Scholar 

  20. Novokhatskii, I.A. and Belov, G.V., Phase equilibrium and distribution of elements in the Fe–Al–O system, Izv. Akad. Nauk SSSR, Met., 1966, no. 1, pp. 38–48.

    Google Scholar 

  21. Bienvenu, Y., Gattellier, C., Henry, J.M., and Olette, M., Desoxidation et desulphyration de l’ acier par les elements alcalino-ferreux calcium et baryum, in Rapport of Iron and Steel Research Institute, RF 4272, September, 1977, pp. 1183–1237.

    Google Scholar 

  22. Hiroyasu, I., Mitsutaka, H., and Shiro, B.-Y., Deoxidation equilibrium of calcium in liquid iron, Trans. Iron Steel Inst. Jpn., 1997, vol. 83, no. 11, pp. 695–700.

    Google Scholar 

  23. Hiroki, O. and Hideaki, S., Deoxidation equilibria of calcium and magnesium in liquid iron, Metall. Mater. Trans. B, 1997, vol. 28, no. 6, pp. 1131–1139.

    Article  Google Scholar 

  24. Gloria, M. and Faurling, S., Ramalingami inclusion precipitation diagram for the Fe–O–Ca–Al system, Metall. Trans. B, 1980, vol. 11, no. 3, pp. 127–132.

    Google Scholar 

  25. Elliott, J.F., Gleiser, M., and Ramakrishna, V., Thermochemistry for Steelmaking, Reading, MA: AddisonWesley, 1963.

    Google Scholar 

  26. Bek, Z., Základní termodynamické údaje o metalurgicky-ch reakcích a o interakcích prvk v soustavách vy-znamny-ch pro hutnickou teorii a praxi, Hutnicke Actual., 1979, vol. 20, nos. 1–2, pp. 3–111.

    Google Scholar 

  27. Balkovoi, Yu.V., Aleev, R.A., and Bakanov, V.K., Parametry vzaimodeistviya pervogo poryadka v rasplavakh na osnove zheleza: informatsionnyi obzor (Parameters in the First-Order Interaction of Iron-Based Alloys: Information Review), Moscow: Chermetinformatsiya, 1987.

    Google Scholar 

  28. Malinovets, V.P. and Puchkov, L.V., The vapor pressure over liquid magnesium and calcium, Zh. Prikl. Khim., 1965, vol. 38, no. 4, pp. 949–952.

    Google Scholar 

  29. Povolotskii, D.Ya., Roshchin, V.E., and Mal’kov, N.V., Elektrometallurgiya stali i ferrosplavov: uchebnik dlya vuzov (Electrometallurgy of Steel and Ferroalloys: Manual for High Education Students), Moscow: Metallurgiya, 1995, 3rd ed.

    Google Scholar 

  30. Myasnikov, A.A., Kazakov, A.A., and Kovalev, P.V., Specific deoxidation of steel by aluminium and calcium, in Mater. mezhvuz. nauchno-tekhn. konf. “XXXIV Nedelya nauki S.-Peterburgskogo Gosudarstvennogo Politekhnicheskogo Universiteta” (Proc. High Education Institutions Sci.-Tech. Conf. “XXXIV Week of Science of the St. Petersburg State Polytechnic University”), St. Petersburg: S.-Peterb. Gos. Politekh. Univ., 2006, pp. 133–134.

    Google Scholar 

  31. Kazachkov, E.A. and Boichuk, L.E., Complex deoxidizing of steel by aluminium and calcium, Vestn. Priazov. Gos. Tekhn. Univ., 2010, no. 20, pp. 11–15.

    Google Scholar 

  32. Taguchi, K., Ono-nakazato, H., Usui, T., et al., Complex deoxidation equilibria of molten iron by aluminum and calcium, ISIJ Int., 2005, vol. 45, no. 11, pp. 1572–1578.

    Article  Google Scholar 

  33. Mikhailov, G.G. and Makrovets, L.A., Thermodynamic modeling of phase equilibria with oxide systems containing rare-earth metals. Report 1. Diagrams of La2O3 oxide systems, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Metall., 2013, vol. 14, no. 3, pp. 5–10.

    Google Scholar 

  34. Mikhailov, G.G., Dresvyankina, L.E., and Makrovets, L.A., Thermodynamics of steel modification by barium and cesium alloys, Steel Transl., 2014, vol. 44, no. 6, pp. 428–432.

    Article  Google Scholar 

  35. Movenko, D.A., Kotel’nikov, G.I., and Semin, A.E., Improvement of the treatment conditions of pipe steel with cerium, Elektrometallurgiya, 2012, no. 8, pp. 7–12.

    Google Scholar 

  36. Golubtsov, V.A., Tikhonov, L.L., Tazetdinov, V.I., et al., Rational technology of steel modification, Nats. Metall., 2003, no. 3, pp. 96–102.

    Google Scholar 

  37. Taira, T. and Kobayashi, Y., Development of line pipe for sour gas service, in Proc. Int. Conf. “Steels for Line Pipe and Pipeline Fittings”, London, October 21–23, 1981, London: Metals Soc., 1983, p. 170.

    Google Scholar 

  38. Dyudkin, D.A. and Kislenko, V.V., Use of rare Earth metals in production of pipe steel, Chern. Metall., Byull. Nauchno-Tekh. Inf., 2006, no. 4, pp. 51–52.

    Google Scholar 

  39. Tsvetkov, A.A., Makhon’ko, Yu.A., Chelyukanov, A.V., et al., Potreblenie redkozemel’nykh i kal’tsievykh splavov v chernoi metallurgii i mashinostroenii SSSR (Consumption of Rare Earth and Calcium Alloys in Steel and Engineering Industry of the Soviet Union), Moscow: Metallurgiya, 1983, no. 2, pp. 77–80.

    Google Scholar 

  40. Akulov, V.V., Kondratyuk, A.L., Belov, B.F., et al., Influence of complex microalloying in CCM crystallizer on properties of hot-rolled 14 G2 ship steel, Metall. Gornorudn. Prom-st, 1984, no. 4, pp. 13–14.

    Google Scholar 

  41. Lunev, V.V. and Shul’te, Yu.V., Application of complex ligatures with rare-earth metals and alkaline-earth metals to improve the properties of cast and deformed steels, in Vliyanie kompleksnogo raskisleniya na svoistva stalei (Influence of Complex Deoxidation of the Steel Properties), Moscow: Metallurgiya, 1982, pp. 33–50.

    Google Scholar 

  42. Reformatskaya, I.I., Rodionova, I.G., Beilin, Yu.A., Nisel’son, L.A. and Podobaev, A.N., The effect of nonmetal inclusions and microstructure on local corrosion of carbon and low-alloyed steels, Prot. Met. Phys. Chem. Surf., 2004, vol. 40, no. 5, pp. 447–452.

    Google Scholar 

  43. Reformatskaya, I.I., Influence of the structure defining factors on the corrosionelectrochemical behavior of iron and stainless steel, Russ. J. Gen. Chem., 2009, vol. 79, no. 9, pp. 1955–1964.

    Article  Google Scholar 

  44. Mikhailov, G.G., Makrovets, L.A., and Smirnov, L.A., The thermodynamics of interaction between cerium, lanthanum, calcium, and silicon with oxygen in molten iron, in Mater. XVI mezhd. konf. “Sovremennye problemy elektrometallurgii stali” (Proc. XVI Int. Conf. “Modern Problems of Electrometallurgy of Steel”), Roshchin, V.E., Ed., Chelyabinsk: Yuzhno-Ural. Gos. Univ., 2015, part 1, pp. 60–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Mikhailov.

Additional information

Original Russian Text © G.G. Mikhailov, L.A. Makrovets, L.A. Smirnov, 2015, published in “Stal’,” 2015, No. 11, pp. 30–39.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, G.G., Makrovets, L.A. & Smirnov, L.A. Thermodynamic modeling of the interaction of high-level element and oxygen in iron-based melt. Steel Transl. 45, 872–882 (2015). https://doi.org/10.3103/S0967091215110133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091215110133

Keywords

Navigation