Skip to main content
Log in

Correcting the thermodynamic model of ideal associated solutions

  • Published:
Steel in Translation Aims and scope

Abstract

According to the model of ideal associated solutions, between one and three associates are usually identified in a typical binary metallic solution with negative deviation from Rouault’s law. According to the phase rule, however, the number of simultaneously coexisting associates must not exceed the number of chemical elements present. In other words, there should be no more than two associates. It is assumed that chemical reactions between the associates eliminate the excess. A special function taking this interaction into account is introduced in the system of equations for the model of ideal associated solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berdnikov, V.I. and Gudim, Yu.A., Predicting the thermodynamic properties of liquid intermetallide solutions, Steel Transl., 2014, vol. 44, no. 7, pp. 498–501.

    Article  Google Scholar 

  2. Berdnikov, V.I. and Gudim, Yu.A., Identifying associates in liquid binary solutions, Steel Transl., 2014, vol. 44, no. 11, pp. 819–823.

    Article  Google Scholar 

  3. Berdnikov, V.I., Machine calculation of chemical equilibria in multicomponent systems, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1984, no. 4, pp. 120–122.

    Google Scholar 

  4. Berdnikov, V.I., Gudim, Yu.A., and Karteleva, M.I., The phase rule in the analysis of metallurgical processes, Steel Transl., 2010, vol. 40, no. 12, pp. 1025–1028.

    Article  Google Scholar 

  5. Berdnikov, V.I. and Gudim, Yu.A., Thermodynamic properties of binary metallic systems containing intermetallic compounds, Steel Transl., 2013, vol. 43, no. 5, pp. 274–277.

    Article  Google Scholar 

  6. Geologicheskii slovar’ (Geological Dictionary), Kshishtofovich, K.N., Ed., Moscow: Nedra, 1955.

    Google Scholar 

  7. Berdnikov, V.I., Gudim, Yu.A., and Karteleva, M.I., Thermodynamic properties of complex oxide systems, Steel Transl., 2011, vol. 41, no. 8, pp. 627–630.

    Article  Google Scholar 

  8. Grigoryan, V.A., Stomakhin, A.Ya., Ponomarenko, A.G., et al., Fizikokhimicheske raschety elektrostaleplavil’nykh protsessov (Physicochemical Calculations of Electrosmelting), Moscow: Metallurgiya, 1989.

    Google Scholar 

  9. Desai, P.D., Thermodynamic properties of binary alumimum alloys, J. Phys. Chem. Ref. Data, 1987, vol. 16, no. 1, pp. 110–124.

    Google Scholar 

  10. Alpatov, A.V. and Paderin, S.N., Calculation of interaction parameters in terms of the mixing energy, http://steelcast.ru/interaction_coefficients_calculation_02, 2011.

    Google Scholar 

  11. HSC Chemistry Database 6, Antti Roine–Pori, Finland: Outokompu Research Oy Information Service, 2006.

  12. Tokunaga, T., Hashima, K., Ohtani, H., and Hasebe, M., Analysis of the Ni–Si–Ti system using thermochemical properties determined from ab initio calculations, Mater. Trans., 2004, vol. 43, no. 5, pp. 1507–1514.

    Article  Google Scholar 

  13. Kulikova, T.V., Il’ninykh, N.I., Moiseev, G.K., and Shunyaev, K.Yu., Thermodynamic properties of solid phases and liquid alloys in the Ni–Al system, Rasplavy, 2007, no. 6, pp. 24–32.

    Google Scholar 

  14. Trusov, B.G., Baza dannykh i programmnyi kompleks Terra (Terra Database and Software), Moscow: MGTU im. N.E. Baumana, 2013.

    Google Scholar 

  15. Batalov, G.I. and Sudavtseva, V.S., Thermodynamic properties of manganese–silicon melts, Izv. Akad. Nauk SSSR, Neorgan. Mater., 1975, vol. 11, no. 10, pp. 1539–1543.

    Google Scholar 

  16. Lee, Y.E., A thermodynamic assessment of liquid Mn-Si alloy, ISIJ Intern., 2012, vol. 52, no. 9, pp. 1539–1543.

    Article  Google Scholar 

  17. Turdogan, E.T., Yrieveson, P., and Beisler, J.F., Kinetic and equilibrium considerations for silicon reaction between silicate melts and graphite-saturated components. Part 1. Reaction equilibrium, Trans. Metallurg. Soc. AIME, 1963, vol. 227, no. 6, pp. 1258–1265.

    Google Scholar 

  18. Moiseev, G.K., Vatolin, N.A., Marshuk, L.A., and Il’inykh, N.I., Temperaturnyi zavisimosti privedennoi energii Gibbsa nekotorykh neorganicheskikh veshchestv (Al’ternativnyi bank dannykh ACTPA.OWN) (Temperature Dependence of the Reduced Gibbs Energy of Some Inorganic Materials: ACTPA.OWN Alternative Databank), Yekaterinburg: UrO RAN, 1997.

    Google Scholar 

  19. Berdnikov, V.I., Gudim, Yu.A., and Karteleva, M.I., Thermodynamic models of complex regular and ideal associated solutions, Steel Transl., 2009, vol. 39, no. 8, pp. 615–620.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Berdnikov.

Additional information

Original Russian Text © V.I. Berdnikov, Yu.A. Gudim, 2015, published in “Izvestiya VUZ. Chernaya Metallurgiya,” 2015, No. 7, pp. 513–519.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berdnikov, V.I., Gudim, Y.A. Correcting the thermodynamic model of ideal associated solutions. Steel Transl. 45, 488–493 (2015). https://doi.org/10.3103/S0967091215070037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091215070037

Keywords

Navigation