Skip to main content
Log in

Integrated synthesis of the control subsystem and its object

  • Published:
Steel in Translation Aims and scope

Abstract

A new approach to control-system design is proposed: integrated synthesis of the control subsystem and its object. Such synthesis is based on models of the objects and control algorithms, with the identification of permissible model-algorithm combinations. Physical-mathematical simulation is effectively employed in synthesis. As an illustration of this approach, control systems are synthesized for oxygen converters in steel production. It is found that the models of smelting must be expanded by the introduction of factors that affect the converter parameters in the course of oxygen injection. Various designs for the control systems are appraised. The best is found to be the system based on an integrated model of the object (with ongoing variation in the converter parameters) and an integrated control algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Myshlyaev, L.P., Shchelokov, A.E., and Yevtushenko, V.F., Matematicheskie i ekonomicheskie modeli v operativnom upravlenii proizvodstvom (Mathematical and Economic Models in Real-Time Control of Production), Moscow: Elektrika, 2000, no. 4.

    Google Scholar 

  2. Myshlyaev, L.P., Ivushkin, K.A., Grachev, V.V., and Shipunov, M.V., Vestn. Sib. Gos. Industr. Univ., 2012, no. 2, pp. 35–40.

    Google Scholar 

  3. Bigeev, A.M., Matematicheskoe opisanie i raschety staleplavil’nykh protsessov (Mathematical Description and Calculations of Steel Smelting), Moscow: Metallurgiya, 1982.

    Google Scholar 

  4. Tsymbal, V.P., Matematicheskoe modelirovanie slozhnykh system v metallurgii: Uchebnik dlya vuzov (Mathematical Modeling of Complex Systems in Metallurgy: A Handbook), Kemerovo: Kuzbassvuzizdat ASTSh, 2006.

    Google Scholar 

  5. Jalkanen, H., Experiences in physicochemical modeling of oxygen converter process (BOF), Sohn International Symposium: Advanced Processing of Metals and Materials, Vol. 2: Thermo- and Physicochemical Principles: Iron and Steel Making, 2006, vol. 2, pp. 541–554.

    Google Scholar 

  6. Lytvynyuk, Y., Schenk, J., Hiebler, M., and Sormann, A., Thermodynamic and kinetic model of the converter steelmaking process, Part I: The description of the BOF model, Steel Res. Intern., 2014, vol. 85(4), pp. 537–543.

    Article  Google Scholar 

  7. Kolpakov, S.V., Teder, L.I., and Dubrovskii, S.A., Upravlenie konverternoi plavki (Control of Converter Smelting), Moscow: Metallurgiya, 1981.

    Google Scholar 

  8. Sokolov, B.M., Shepelyavyi, A.I., and Medvedev, A.V., Vestn. Sankt-Peterburgsk. Univ., Ser. 1: Matem., Mekhan., Astron., 2003, no. 2, pp. 58–65.

    Google Scholar 

  9. Bogushevskii, V.S., Sukhenko, V.Yu., and Sergeeva, E.A., Steel Transl., 2011, vol. 41, no. 8, pp. 641–644.

    Article  Google Scholar 

  10. Hideaki, S. and Ryo, I., Thermodynamic assessment of hot metal and steel dephosphorization with MnO-containing BOF slags, ISIJ Intern., 1995, vol. 35(3), pp. 258–265.

    Article  Google Scholar 

  11. Brooks, G.A., Dogan, N., Alam, N., Naser, J., and Rhamdhani, M.A., Developments in the modelling of oxygen steelmaking, Guthrie Symposium, Montreal: McGill University, 2011.

    Google Scholar 

  12. Dogan, N., Brooks, G.A., and Rhamdhani, M.A., Comprehensive model of oxygen steelmaking, Part I: Model development and validation, ISIJ Intern., 2011, vol. 51(7), pp. 1086–1092.

    Article  Google Scholar 

  13. Avdeev, V.P., Aizatulov, R.S., Myshlyaev, L.P., et al., Sposoby rascheta mass materialov konverternogo proizvodstva (Methods of Calculation the Mass of Materials in Converter Production), Moscow: Metallurgiya, 1994.

    Google Scholar 

  14. Turkenich, D.I., Upravlenie plavkoi stali v konvertore (Control of Steel Production in a Converter), Moscow: Metallurgiya, 1976.

    Google Scholar 

  15. Glinkov, G.M. and Makovskii, V.A., ASUTP v chernoi metallurgii (Automatic Control Systems in Ferrous Metallurgy), Moscow: Metallurgiya, 1999.

    Google Scholar 

  16. Han, M. and Zhao, Y., Dynamic control model of BOF steelmaking process based on ANFIS and robust relevance vector machine, Expert Syst. Appl., 2011, vol. 38(12), pp. 14786–14798.

    Article  Google Scholar 

  17. Koshelev, A.E., Solov’ev, V.I., Aizatulov, R.S., et al., Prib. Sist. Upravl., 1977, no. 1, pp. 9–11.

    Google Scholar 

  18. Jun, T., Xin, W., Tianyou, C., and Shuming, X., Intelligent control method and application for BOF steelmaking process, World Congr., 2002, vol. 15(1), pp. 724–726.

    Google Scholar 

  19. Volovich, M.I., Avdeev, V.P., Gerasimenko, I.P., and Protopopov, E.V., Kombinirovannoe upravlenie konverternoi plavkoi (Integrated Control of Converter Smelting), Kemerovo: Kn. Izd., 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Lyakhovets.

Additional information

Original Russian Text © M.V. Lyakhovets, K.A. Ivushkin, L.P. Myshlyaev, S.V. Chernyavskii, E.I. L’vova, 2014, published in “Izvestiya VUZ. Chernaya Metallurgiya,” 2014, No. 12, pp. 33–36.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyakhovets, M.V., Ivushkin, K.A., Myshlyaev, L.P. et al. Integrated synthesis of the control subsystem and its object. Steel Transl. 44, 886–889 (2014). https://doi.org/10.3103/S0967091214120110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091214120110

Keywords

Navigation