Skip to main content
Log in

Optogenetic approaches in neurobiology

  • Reviews
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Optogenetics is a rapidly developing new technique that combines optical methods with techniques that are used in molecular biology. It can be used for monitoring various optical processes in cells and controlling their activity using light. The technique is based on bacterial opsin expression in mammalian neurons. In this review, the use of optogenetics for controlling the activity of specific neuronal populations in different regions of the human brain is considered in detail. The paper also presents information on light-sensitive proteins, genetically encoded optical instruments, and their use for activation or inhibition of neurons and investigation of the causal relationship between neural networks and pathological symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamantidis, A.R., Zhang, F., Aravanis, A.M., Deisseroth, K., et al., Neural substrates of awakening probed with optogenetic control of hypocretin neurons, Nature, 2007, vol. 450, pp. 420–424.

    Article  CAS  PubMed  Google Scholar 

  2. Airan, R.D., Thompson, K.R., Fenno, L.E., Bernstein, H., and Deisseroth, K., Temporally precise in vivo control of intracellular signaling, Nature, 2009, vol. 458, pp. 1025–1029.

    Article  CAS  PubMed  Google Scholar 

  3. Amos, W.B. and White, J.G., How the confocal laser scanning microscope entered biological research, Biol. Cell, 2003, vol. 85, pp. 335–342.

    Article  Google Scholar 

  4. Arenkiel, B.R., Peca, J., Davison, I.G., Feliciano, C., et al., In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2, Neuron, 2007, vol. 54, pp. 205–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bendtsen, J.D., Nielsen, H., von Heijne, G., and Brunak, S., Improved prediction of signal peptides, J. Mol. Biol., 2004, vol. 340, pp. 783–795.

    Article  PubMed  Google Scholar 

  6. Bi, A., Cui, J., Ma, Y.P., Olshevskaya, E., et al., Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration, Neuron, 2006, vol. 50, pp. 23–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chow, B.Y., Han, X., Dobry, A.S., Qian, X., et al., High-performance genetically targetable optical neural silencing by light-driven proton pumps, Nature, 2009, vol. 463, pp. 98–102.

    Article  Google Scholar 

  8. Deisseroth, K., Etkin, A., and Malenka, R.C., Optogenetics and the circuit dynamics of psychiatric disease, JAMA, 2015, vol. 313, no. 20, pp. 2019–2020.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Deisseroth, K., Optogenetics, Nat. Methods, 2011, vol. 8, pp. 26–29.

    Article  CAS  PubMed  Google Scholar 

  10. Derby, M.C. and Gleeson, P.A., New insights into membrane trafficking and protein sorting, Int. Rev. Cytol., 2007, vol. 261, pp. 47–116.

    Article  CAS  PubMed  Google Scholar 

  11. Duschl, A., Lanyi, J.K., and Zimanyi, L., Anion binding to the chloride pump, halorhodopsin, and its implications for the transport mechanism, J. Biol. Chem., 1990, vol. 265, pp. 1261–1267.

    CAS  Google Scholar 

  12. Evans, C.L., Potma, E.O., Puoris’haag, M., Cote, D., et al., Chemical imaging of tissue in vivo with videorate coherent anti-Stokes Raman scattering microscopy, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, pp. 16807–16812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Figueiredo, M., Lane, S., Tang, F., Liu, B.-H., Hewinson, J., et al., Optogenetic experimentation on astrocytes, Exp. Physiol., 2010, vol. 96, pp. 40–50.

    Article  PubMed  Google Scholar 

  14. Gradinaru, V., Thompson, K.R., Zhang, F., Mogri, M., et al., Targeting and readout strategies for fast optical neural control in vitro and in vivo, J. Neurosci., 2007, vol. 27, no. 52, pp. 14231–14238.

    Article  CAS  PubMed  Google Scholar 

  15. Gradinaru, V., Thompson, K.R., and Deisseroth, K., eNpHR: A Natronomnas halorhodopsin enhanced for optogenetic applications, Brain Cell Biol., 2008, vol. 36, nos. 1–4, pp. 129–139.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gradinaru, V., Mogri, M., Thompson, K.R., Henderson, J.M., and Deisseroth, K., Optical deconstruction of parkinsonian neural circuitry, Science, 2009, vol. 324, pp. 354–359.

    Article  CAS  PubMed  Google Scholar 

  17. Hardie, R.C. and Raghu, P., Visual transduction in Drosophila, Nature, 2001, vol. 413, pp. 186–193.

    Article  CAS  PubMed  Google Scholar 

  18. Hägglund, M., Borgius, L., Dougherty, K.J., and Kiehn, O., Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion, Nat. Neurosci., 2010, vol. 13, pp. 246–252.

    Article  PubMed  Google Scholar 

  19. Hong, M., Fitzgerald, M.X., Harper, S., Luo, C., Speicher, D.W., and Marmorstein, R., Structural basis for dimerization in DNA recognition by Gal4, Structure, 2008, vol. 16, no. 7, pp. 1019–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Iossifov, I., O’Roak, B.J., Sanders, S.J., Ronemus, M., Krumm, N., et al., The contribution of de novo coding mutations to autism spectrum disorder, Nature, 2014, vol. 515, no. 7526, pp. 216–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kato, H.E., Zhang, F., Yizhar, O., Ramakrishnan, C., Nishizawa, T., et al., Crystal structure of the channelrhodopsin light-gated cation channel, Nature, 2012, vol. 482, pp. 369–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kennedy, M.J., Hughes, R.M., Peteya, L.A., Schwartz, J.W., Ehlers, M.D., and Tucker, C.L., Rapid blue-light-mediated induction of protein interactions in living cells, Nat. Methods, 2010, vol. 7, no. 12, pp. 973–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kienle, E., et al., A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing, Nat. Neurosci., 2012, vol. 15, pp. 793–802.

    Article  Google Scholar 

  24. Kohl, M., Shipton, O., Deacon, R., Rawlins, J., Deisseroth, K., and Paulsen, O., Hemisphere-specific optogenetic stimulation reveals left-right asymmetry of hippocampal plasticity, Nat. Neurosci., 2011, vol. 14, pp. 1413–1415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Krook-Magnuson, E., Armstrong, C., Oijala, M., and Soltesz, I., On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy, Nat. Commun., 2013, vol. 4, p. 1376.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu, X. and Davis, R.L., Insect olfactory memory in time and space, Curr. Opin. Neurobiol., 2006, vol. 16, pp. 679–685.

    Article  CAS  PubMed  Google Scholar 

  27. Llewellyn, M.E., Thompson, K.R., Deisseroth, K., and Delp, S.L., Orderly recruitment of motor units under optical control in vivo, Nat. Med., 2010, vol. 16, pp. 1161–1165.

    Article  CAS  PubMed  Google Scholar 

  28. Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., et al., Channelrhodopsin-2 a directly lightgated cation-selective membrane channel, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 24, pp. 13940–13945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Palczewski, K., G protein-coupled receptor rhodopsin, Annu. Rev. Biochem., 2006, vol. 75, pp. 743–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Paz, J., Davidson, T., Frechette, E., Delord, B., Parada, I., Peng, K., et al., Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury, Nat. Neurosci., 2013, vol. 16, pp. 64–70.

    Article  CAS  PubMed  Google Scholar 

  31. Petreanu, L., Huber, D., Sobczyk, A., and Svoboda, K., Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections, Nat. Neurosci., 2007, vol. 10, pp. 663–668.

    Article  CAS  PubMed  Google Scholar 

  32. Richter, C.-P. and Tan, X., Photons and neurons, Hear. Res., 2014, vol. 311, pp. 72–88.

    Article  PubMed  Google Scholar 

  33. Shimizu-Sato, S., Huq, E., Tepperman, J.M., and Quail, P.H., A lightswitchable gene promoter system, Nat. Biotechnol., 2002, vol. 20, no. 10, pp. 1041–1044.

    Article  CAS  PubMed  Google Scholar 

  34. Tønnesen, J., Sørensen, A., Deisseroth, K., Lundberg, C., and Kokaia, M., Optogenetic control of epileptiform activity, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 12162–12167.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tsai, H.C., Zhang, F., Adamantidis, A., Stuber, D.G., et al., Phasic firing in dopaminergic neurons is sufficient for behavioral condition, Science, 2009, vol. 324, no. 5930, pp. 1080–1084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, X., Chen, X., and Yang, Y., Spatiotemporal control of gene expression by a light-switchable transgene system, Nat. Methods, 2012, vol. 9, no. 3, pp. 266–269.

    Article  CAS  PubMed  Google Scholar 

  37. Yin, T. and Wu, Y., Guiding lights: recent developments in optogenetic control of biochemical signals, Pfluegers Arch., 2013, vol. 465, pp. 397–408.

    Article  CAS  Google Scholar 

  38. Yizhar, O., Fenno, L.E., Davidson, T.J., Morgi, M., and Deisseroth, K., Optogenetics in neuronal systems, Neuron, 2011, vol. 71, pp. 9–34.

    Article  CAS  PubMed  Google Scholar 

  39. Zeng, H. and Madisen, L., Mouse transgenic approaches in optogenetics, Prog. Brain Res., 2012, vol. 196, pp. 193–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao, S., Cunha, G., Zhang, F., Liu, Q., et al., Improved expression of halorhodopsin for lightinduced silencing of neuronal activity, Brain Cell Biol., 2008, vol. 36, nos. 1–4, pp. 141–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Borisova.

Additional information

Original Russian Text © E.V. Borisova, E.A. Epifanova, S.A. Tutukova, V.A. Salina, A.A. Babaev, 2016, published in Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya, 2016, No. 4, pp. 128–132.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisova, E.V., Epifanova, E.A., Tutukova, S.A. et al. Optogenetic approaches in neurobiology. Mol. Genet. Microbiol. Virol. 31, 203–207 (2016). https://doi.org/10.3103/S0891416816040029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416816040029

Keywords

Navigation