Skip to main content

Abstract

Optogenetics is the use of light and genetically encoded light-sensitive proteins to modulate the activity of specific cells. Here, we focus on the use of optogenetics in neuroscience, where it is used to rapidly activate or inhibit a specific population of neurons in the brain. The basic components required are (1) photosensitive molecules targeted to specific cells, (2) light delivery to the brain, and (3) electrophysiological or behavioral readouts for optogenetic manipulation of a system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oesterhelt, D., Stoeckenius, W.: Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol. 233, 149-152 (1971)

    Article  Google Scholar 

  2. Oesterhelt, D., Stoeckenius, W.: Functions of a new photoreceptor membrane. Proc Natl Acad Sci U S A. 70(10), 2853-2857 (1973)

    Article  Google Scholar 

  3. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K.: Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 8(9), 1263-1268 (2005)

    Article  Google Scholar 

  4. Spudich, J. L., Yang, C. S., Jung, K. H., and Spudich, E. N.: Retinylidene proteins: structures and functions from archaea to humans. Annu. Rev. Cell Dev. Biol. 16, 365−392 (2000)

    Article  Google Scholar 

  5. Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P., Bamberg, E.: Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A. 100(24), 13940-13945 (2003)

    Article  Google Scholar 

  6. Sineshchekov, O.A., Govorunova, E.G., Spudich, J.L.: Photosensory functions of channelrhodopsins in native algal cells. Photochem Photobiol. 85(2), 556-563 (2009). doi: 10.1111/j.1751-1097.2008.00524.x

    Article  Google Scholar 

  7. Feldbauer, k., Zimmermann, D., Pintschovius, V., Spitz, J., Bamann, C., Bamberg, E.: Channelrhodopsin-2 is a leaky proton pump. P. Natl. Acad. Sci. USA 106, 12317-12322 (2009)

    Google Scholar 

  8. Zhang, F., Prigge, M., Beyriere, F., Tsunoda, S. P., Mattis, J., Yizhar, O., Hegemann, P., and Deisseroth, K.: Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat. Neurosci. 11, 631−633 (2008)

    Article  Google Scholar 

  9. Gunaydin, L. A., Yizhar, O., Berndt, A., Sohal, V. S., Deisseroth, K., and Hegemann, P.: Ultrafast optogenetic control. Nat. Neurosci. 13, 387−392 (2010)

    Article  Google Scholar 

  10. Govorunova, E. G., Spudich, E. N., Lane, C. E., Sineshchekov, O. A., and Spudich, J. L.: New channelrhodopsin with a reds shifted spectrum and rapid kinetics from Mesostigma viride. mBio 2, e00115−00111 (2011)

    Google Scholar 

  11. Yizhar, O., Fenno, L. E., Prigge, M., Schneider, F., Davidson, T. J., O’Shea, D. J., Sohal, V. S., Goshen, I., Finkelstein, J., Paz, J. T., Stehfest, K., Fudim, R., Ramakrishnan, C., Huguenard, J. R., Hegemann, P., and Deisseroth, K.: Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171−178 (2011)

    Article  Google Scholar 

  12. Matsuno-Yagi, A., Mukohata, Y.: Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem. Biophys. Res. Commun. 78, 237−243 (1977)

    Article  Google Scholar 

  13. Lanyi, J.K., and Oesterhelt, D.: Identification of the retinal-binding protein in halorhodopsin. J. Biol. Chem. 257, 2674-2677 (1982)

    Google Scholar 

  14. Han, X., and Boyden, E. S.: Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PloS One 2, e299 (2007)

    Article  Google Scholar 

  15. Zhang, F., Wang, L.-P., Brauner, M., Liewald, J.F., Kay, K., Watzke, N., Wood, P.G., Bamberg, E., Nagel, G., Gottschalk, A., & Deisseroth, K., Multimodal fast optical interrogation of neural circuitry. Nature 446, 633−639 (2007)

    Article  Google Scholar 

  16. Gradinaru, V., Zhang, F., Ramakrishnan, C., Mattis, J., Prakash, R., Diester, I., Goshen, I., Thompson, K.R., Deisseroth, K.: Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154-165 (2010)

    Article  Google Scholar 

  17. Bamberg, E., Tittor, J., and Oesterhelt, D.: Light-driven proton or chloride pumping by halorhodopsin. Proc. Natl. Acad. Sci. U.S.A. 90, 639−643 (1993)

    Article  Google Scholar 

  18. Chow, B. Y., Han, X., Dobry, A. S., Qian, X., Chuong, A. S., Li, M., Henninger, M. A., Belfort, G. M., Lin, Y., Monahan, P. E., and Boyden, E. S.: High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98−102 (2010)

    Article  Google Scholar 

  19. Raimondo, J. V., Kay, L., Ellender, T. J., and Akerman, C. J.: Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission. Nat. Neurosci. 15, 1102-1104 (2012). doi: 10.1038/nn.3143

    Article  Google Scholar 

  20. Han, X., Chow, B. Y., Zhou, H., Klapoetke, N. C., Chuong, A., Rajimehr, R., Yang, A., Baratta, M. V., Winkle, J., Desimone, R., and Boyden, E. S.: A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front. Syst. Neurosci. 5, 18 (2011)

    Article  Google Scholar 

  21. Airan, R.D., Thompson, K.R., Fenno, L.E., Bernstein, H., Deisseroth, K.: Temporally precise in vivo control of intracellular signalling. Nature 458, 1025–1029 (2009)

    Article  Google Scholar 

  22. Oh, E., Maejima, T., Liu, C., Deneris, E., Herlitze, S.: Substitution of 5-HT1A receptor signaling by a light-activated G protein-coupled receptor. J. Biol. Chem. 285, 30825–30836 (2010)

    Article  Google Scholar 

  23. Zhang, F., Gradinaru, V., Adamantidis, A.R., Durand, R., Airan, R.D., et al.: Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat. Protoc. 5, 439–456 (2010)

    Article  Google Scholar 

  24. Aravanis, A.M., Wang, L.P., Zhang, F., Meltzer, L.A., Mogri, M.Z., et al.: An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4, S143–56 (2007)

    Article  Google Scholar 

  25. Han, X. Optogenetics in the nonhuman primate. Prog. Brain Res. 196, 215−233 (2012)

    Article  Google Scholar 

  26. Burger, C., Gorbatyuk, O.S., Velardo, M.J., Peden, C.S., Williams, P., Zolotukhin, S., Reier, P.J., Mandel, R.J., Muzyczka, N.: Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther. 10(2), 302-317 (2004)

    Article  Google Scholar 

  27. Nathanson, J. L., Jappelli, R., Scheeff, E. D., Manning, G., Obata, K., Brenner, S., and Callaway, E. M.: Short Promoters in Viral Vectors Drive Selective Expression in Mammalian Inhibitory Neurons, but do not Restrict Activity to Specific Inhibitory Cell-Types. Front. Neural Circuits 3, 19 (2009)

    Article  Google Scholar 

  28. Atasoy, D., Aponte, Y., Su, H. H., and Sternson, S. M.: A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 7025−7030 (2008)

    Article  Google Scholar 

  29. Sauer, B., and Henderson, N.: Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc. Natl. Acad. Sci. U.S.A. 85, 5166−5170 (1988)

    Article  Google Scholar 

  30. Tsien, J. Z., Chen, D. F., Gerber, D., Tom, C., Mercer, E. H., Anderson, D. J., Mayford, M., Kandel, E. R., and Tonegawa, S.: Subregion- and cell type-restricted gene knockout in mouse brain. Cell 87, 1317−1326 (1996)

    Article  Google Scholar 

  31. Madisen, L., Mao, T., Koch, H., Zhuo, J. M., Berenyi, A., Fujisawa, S., Hsu, Y. W., Garcia, A. J., 3rd, Gu, X., Zanella, S., Kidney, J., Gu, H., Mao, Y., Hooks, B. M., Boyden, E. S., Buzsaki, G., Ramirez, J. M., Jones, A. R., Svoboda, K., Han, X., Turner, E. E., and Zeng, H.: A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat. Neurosci. 15, 793−802 (2012)

    Article  Google Scholar 

  32. Mazarakis, N. D., Azzouz, M., Rohll, J. B., Ellard, F. M., Wilkes, F. J., Olsen, A. L., Carter, E. E., Barber, R. D., Baban, D. F., Kingsman, S. M., Kingsman, A. J., O’Malley, K., and Mitrophanous, K. A.: Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum. Mol. Genet. 10, 2109−2121 (2001)

    Article  Google Scholar 

  33. Wickersham, I.R., Lyon, D.C., Barnard, R.J., Mori, T., Finke, S., et al.: Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007)

    Article  Google Scholar 

  34. Lima, S.Q., Hromádka T., Znamenskiy, P., Zador, A.M. PINP: A New Method of Tagging Neuronal Populations for Identification during In Vivo Electrophysiological Recording. PLoS ONE 4, e6099 (2009). doi:10.1371/journal.pone.0006099

    Article  Google Scholar 

  35. Gradinaru, V., Mogri, M., Thompson, K.R., Henderson, J.M., Deisseroth, K.: Optical deconstruction of parkinsonian neural circuitry. Science 324, 354–59 (2009)

    Article  Google Scholar 

  36. Tye, K. M., Prakash, R., Kim, S. Y., Fenno, L. E., Grosenick, L., Zarabi, H., Thompson, K. R., Gradinaru, V., Ramakrishnan, C., and Deisseroth, K.: Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471, 358−362 (2011)

    Article  Google Scholar 

  37. Mobley, J., and Vo-Dinh, T.: Optical properties of Tissue. In Biomedical Photonics Handbook, pp 1−72, CRC Press, Boca Raton, FL (2003)

    Google Scholar 

  38. Bernstein, J. G., Han, X., Henninger, M. A., Ko, E. Y., Qian, X., Franzesi, G. T., McConnell, J. P., Stern, P., Desimone, R., and Boyden, E. S.: Prosthetic systems for therapeutic optical activation and silencing of genetically-targeted neurons. Proc. Soc. Photo-Opt. Instrum. Eng. 6854, 68540H (2008)

    Google Scholar 

  39. Han, X., Qian, X., Bernstein, J. G., Zhou, H. H., Franzesi, G. T., Stern, P., Bronson, R. T., Graybiel, A. M., Desimone, R., and Boyden, E. S.: Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62, 191−198 (2009)

    Article  Google Scholar 

  40. Bernstein, J.G., Garrity, P.A., Boyden, E.S.: Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits. Curr Opin Neurobiol 22, 61-71 (2012)

    Article  Google Scholar 

  41. Wells, J., Kao, C., Mariappan, K., Albea, J., Jansen, E. D., Konrad, P., and Mahadevan-Jansen, A.: Optical stimulation of neural tissue in vivo. Opt. Lett. 30, 504−506 (2005)

    Article  Google Scholar 

  42. Tufail, Y., Yoshihiro, A., Pati, S., Li, M.M., Tyler, W.J.: Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nature Protocols 6, 1453-1470 (2011)

    Article  Google Scholar 

  43. Ayling, O.G., Harrison, T.C., Boyd, J.D., Goroshkov, A., Murphy, T.H.: Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice. Nat Methods 6, 219-224 (2009)

    Article  Google Scholar 

  44. Zorzos, A. N., Dietrich, A., Talei Franzesi, G., Chow, B., Han, X., Fonstad, C. G., Boyden, E.S.: Light-proof neural recording electrodes. In: Society for Neuroscience, Annual Meeting of. Chicago, 17-21 October (2009)

    Google Scholar 

  45. Zimmermann, D., Zhou, A., Kiesel, M., Feldbauer, K., Terpitz, U., Haase, W., Schneider-Hohendorf, T., Bamberg, E., and Sukhorukov, V.L.: Effects on capacitance by overexpression of membrane proteins. Biochem. Biophys. Res. Commun. 369, 1022–1026 (2008)

    Article  Google Scholar 

  46. Wentz, C. T., Bernstein, J. G., Monahan, P., Guerra, A., Rodriguez, A., Boyden, E. S.: A Wirelessly Powered and Controlled Device for Optical Neural Control of Freely-Behaving Animals. Journal of Neural Engineering 8(4), 046021 (2011)

    Article  Google Scholar 

  47. Sendelbeck, L.S., Urquhart, J.: Spatial distribution of dopamine, methotrexate and antipyrine during continuous intracerebral microperfusion 328, 251-258 (1984)

    Google Scholar 

  48. Tehovnik, E.J.: Electrical stimulation of neural tissue to evoke behavioral responses. Journal of Neuroscience Methods 65, 1-17 (1996)

    Article  Google Scholar 

  49. Fenno, L., Yizhar, O., et al.: The Development and Application of Optogenetics.” Annual Review of Neuroscience 34, 389-412 (2011)

    Article  Google Scholar 

  50. Lee, S., Kwan, A. C., et al.: Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488, 379-385 (2012)

    Article  Google Scholar 

  51. Adesnik, H., Bruns, W., et al.: A neural circuit for spatial summation in visual cortex. Nature 490, 226-231 (2012)

    Article  Google Scholar 

  52. Royer, S., Zemelman, B. V., et al.: Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nature Neuroscience 15(5), 769-775 (2012)

    Article  Google Scholar 

  53. Liu, X., Ramirez, S., et al.: Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381-385 (2012)

    Article  Google Scholar 

  54. Witten, I. B., Lin, S., et al.; Cholinergic Interneurons Control Local Circuit Activity and Cocaine Conditioning. Science 330, 1677-1681 (2010)

    Article  Google Scholar 

  55. Tsai, H., Zhang, F., et al.: Phasic Firing in Dopaminergic Neurons Is Sufficient for Behavioral Conditioning. Science 324, 1080-1084 (2009)

    Article  Google Scholar 

  56. Chaudhury, D., J. J. Walsh, et al.: Rapid regulation of depression-related behaviors by control of midbrain dopamine neurons. Nature 493(7433), 532-536 (2013)

    Article  Google Scholar 

  57. Warden, M. R., Selimbeyoglu, A., et al.: A prefrontal cortex-brainstem neuronal projection that controls response to behavioral challenge. Nature 493, 428-432 (2012)

    Google Scholar 

  58. Zhuang, X., Masson, J.: et al.: Targeted gene expression in dopamine and serotonin neurons of the mouse brain. Journal of Neuroscience Methods 143, 27-32 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Quach, A., James, N., Han, X. (2014). Optogenetics. In: De Vittorio, M., Martiradonna, L., Assad, J. (eds) Nanotechnology and Neuroscience: Nano-electronic, Photonic and Mechanical Neuronal Interfacing. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8038-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-8038-0_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-8037-3

  • Online ISBN: 978-1-4899-8038-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics