Skip to main content

Advertisement

Log in

Construction and characterization of Francisella tularensis vaccine strain with a single copy of iglC gene and lacking recA gene

  • Experimental Works
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Live vaccine used in Russia against tularemia is based on Francisella tularensis subsp. holarctica NIIEG vaccine strain 15. This vaccine is highly effective, but fairly unstable. Therefore, the development of stable live tularemia vaccine with minimal side effects is rather pressing. F. tularensis iglC gene is required for intracellular production of the microbe, and recA gene is crucial for homologous recombination. Using methodology for allele removal, we deleted one copy of iglC gene and both copies of recA gene in F. tularensis vaccine strain. To achieve replacement of intact F. tularensis chromosome segments with modified segments, we constructed a novel pGM5 suicide vector based on pHV33 bireplicon plasmid. Modified chromosome segments contained a F. tularensis DNA fragment without 545 bp of iglC structural gene segment (in pGMΔiglC plasmid) and lacked a 1060-bp DNA fragment containing recA structural gene segment (pGMΔrecA plasmid). The constructed 15/23-lΔrecA mutant was capable to reproduce in macrophage-like J77A.l cell line with proliferation efficiency eight to ten times higher than parent vaccine strain 15. BALB/c mouse responded to immunization by 15/23-lΔrecA strain with a slight (about 2%) weight decrease compared to infection with strain 15 (about 14%). Bacteria of 15/23-lΔrecA strain were virtually incapable of maintaining germination in BALB/c murine spleen 14 days after invasion. In turn, bacteria of strain 15 were detected in murine spleen even after 21 days. Thus, F. tularensis 15/23-lΔrecA strain, which results in a lighter organismal reaction, can be successfully used as a basis for construction of stable live tularemia vaccines with minimal side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olsuf’ev, N.G., Taksonomiya, mikrobiologiya i laboratornaya diagnostika vozbuditelya tulyaremii (Taxonomy, Microbiology, and Laboratory Diagnosis of the Causative Agent of Tularemia), Moscow: Meditsina, 1975.

    Google Scholar 

  2. Ellis, J., Oyston, P.C.F., Green, M., and Titball, R.W., Tularemia, Clin. Microbiol. Rev., 2002, Vol. 15, No. 4, pp. 631–646.

    Article  Google Scholar 

  3. Medunitsyn, N.V., Vaktsinologiya (Vaccinology), Moscow: Triada-Kh, 1999.

    Google Scholar 

  4. Conlan, J.W. and Oyston, P.C.E., Vaccines against Francisella tularensis, Ann. NY Acad. Sci., 2007, Vol. 1105, pp. 325–350.

    Article  Google Scholar 

  5. Rohmen, L., Brittnacher, M., Svensson, K., Buckley, D., Haugen, E., Zhou, Y., et al., Potential source of Francisella tularensis live vaccine strain attenuation determined by genome comparison, Infect. Immun., 2006, Vol. 74, No. 12, pp. 6895–6906.

    Article  Google Scholar 

  6. Eigelsbach, H.T. and Downs, C.M., Prophylactic effectiveness of live and killed tularemia vaccines. I. Production of vaccine and evaluation in the white mouse and guinea pig, J. Immunol., 1961, Vol. 87, pp. 415–425.

    CAS  PubMed  Google Scholar 

  7. Sandstrom, G., The tularemia vaccine, J. Chem. Technol. Biotechnol., 1994, Vol. 59, pp. 315–320.

    Article  CAS  PubMed  Google Scholar 

  8. Osnovnye trebovaniya k vaktsinnym shtammam tulyaremiinogo mikroba. Metodicheskie ukazaniya. MU 3.3.1.2161–07 (Basic Requirements for Tularemia Microbe Vaccine Strains: Guidelines, MU 3.3.1.2161–07), Moscow: Federal’nyi tsentr gigieny i epidemiologii Rospotrebnadzora, 2007.

  9. Golovliov, I., Sjostedt, A., Mokrievich, A., and Pavlov, V., A method for allelic replacement in Francisella tularensis, FEMS Microbiol. Letts., 2003, Vol. 222, pp. 273–280.

    Article  CAS  Google Scholar 

  10. Maier, T.M., Havig, A., Casey, M., Nano, F.E., Frank, D.W., and Zahrt, T.C., Construction and characterization of a highly efficient Francisella shuttle plasmid, Appl. Environ. Microbiol., 2004, Vol. 70, pp. 7511–7519.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Broekhuijsen, M., Larsson, P., Johansson, A., Bystrom, M., Eriksson, U., Larsson, E., et al., Genome-wide DNA microarray analysis of Francisella tularensis strains demonstrates extensive genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp. tularensis, J. Clin. Microbiol., 2003, Vol. 41, pp. 2924–2931.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Twine, S.M., Mykytczuk, N.C., Petit, M.D., Shen, H., Sjostedt, A., Wayne, C.J., et al., In vivo proteomic analysis of the intracellular bacterial pathogen, Francisella tularensis, isolated from mouse spleen, Biochem. Biophys. Res. Commun., 2006, Vol. 345, pp. 1621–1633.

    Article  CAS  PubMed  Google Scholar 

  13. Larsson, P., Oyston, P.C.F., Chain, P., Chu, M.C., Duffield, M., Fuxelius, H.H., et al., The complete genome sequence of Francisella tularensis, the causative agent of tularemia, Nat. Genet., 2005, Vol. 37, pp. 153–159.

    Article  CAS  PubMed  Google Scholar 

  14. Mokrievich, A.N., Vakhrameeva, G.M., Mironova, R.I., Kombarova, T.I., Titareva, G.M., Kravchenko, T.B., et al., Construction and investigation of the vaccine strain of Francisella tularensis without iglC genes. Communication 1, Probl. Osobo Opasn. Infekts., 2013, Vol. 117, No. 3, pp. 70–74.

    Google Scholar 

  15. Lapin, A.A., Kravchenko, T.B., Mokrievich, A.N., Vakhrameeva, G.M., Kombarova, T.I., Dyatlov, I.A., et al., Study of the UV irradiation and nalidicsic acid effect on the RecA-protein induction in Francisella tularensis 15/10 cells, Probl. Osobo Opasn. Infekts., 2011, Vol. 109, No. 3, pp. 36–39.

    Google Scholar 

  16. Lapin, A.A., Mokrievich, A.N., Vakhrameeva, G.M., Kombarova, T.I., Bakhteeva, I.V., Dyatlov, I.A., et al., Immunobiological properties of Francisella tularensis 15/10 strain with deleted recA gene, Probl. Osobo Opasn. Infekts., 2011, Vol. 110, No. 4, pp. 65–67.

    Google Scholar 

  17. Woodcock, D.M., Crowther, P.J., Doherty, J., Jefferson, S., DeCruz, E., Noyer-Weidner, M., et al., Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants, Nucleic Acids Res., 1989, Vol. 17, pp. 3469–3478.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Ehrlich, S.D., DNA cloning in bacillus subtilis, Proc. Natl. Acad. Sci. U.S.A., 1978, Vol. 75, pp. 1433–1436.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. National Research Council. Guide for the Care and Use of Laboratory Animals, 8th ed., Washington, DC: National Academy Press, 2010.

  20. Miller, J., Experiments in Molecular Genetics, New York Cold Spring Harbor, 1972; Moscow: Mir, 1976.

    Google Scholar 

  21. Lapin, A.A., Pavlov, V.M., Mokrievich, A.N., Domotenko, L.V., and Khramov, M.V., Simple liquid nutrient medium for molecular genetic investigations of Francisella tularensis, Probl. Osobo Opasn. Infekts., 2009, Vol. 102, No. 4, pp. 66–67.

    Google Scholar 

  22. Maniatis, T., Fritsch, E. F., and Sambrook, J. Molecular Cloning, Cold Spring Harbor, New York Cold Spring Harbor Lab. Press, 1982; Moscow: Mir, 1984.

    Google Scholar 

  23. Pavlov, V.M., Mokrievich, A.N., and Volkovoy, K., Cryptic plasmid pFNL10 from Francisella novicidalike F6168: the base of plasmid vectors for Francisella tularensis, FEMS Immunol. Med. Microbiol., 1996, Vol. 13, pp. 253–256.

    Article  CAS  PubMed  Google Scholar 

  24. Pomerantsev, A.P., Golovliov, I.R., Ohara, Y., Mokrievich, A.N., Obuchi, M., Norqvist, A., et al., Genetic organization of the Francisella plasmid pFNL10, Plasmid, 2001, Vol. 46, No. 3, pp. 210–222.

    Article  CAS  PubMed  Google Scholar 

  25. Uchitel’, I.Ya., Makrofagi v immunitete (Macrophages in Immunity), Moscow: Meditsina, 1978.

    Google Scholar 

  26. Goze, A. and Ehrlich, S.D., Replication of plasmids from Staphyllococcus aureus in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A., 1980, Vol. 77, pp. 7333–7337.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Mokrievich.

Additional information

Original Russian Text © A.N. Mokrievich, G.N. Vakhrameeva, G.M. Titareva, I.V. Bakhteeva, R.I. Mironova, T.I. Kombarova, T.B. Kravchenko, I.A. Dyatlov, V.M. Pavlov, 2015, published in Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya, 2015, No. 3, pp. 33–39.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokrievich, A.N., Vakhrameeva, G.N., Titareva, G.M. et al. Construction and characterization of Francisella tularensis vaccine strain with a single copy of iglC gene and lacking recA gene. Mol. Genet. Microbiol. Virol. 30, 148–156 (2015). https://doi.org/10.3103/S0891416815030039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416815030039

Keywords

Navigation