Skip to main content
Log in

Cosmic-Ray Distribution Function under Anisotropic Scattering of Particles by Magnetic-Field Fluctuations

  • SPACE PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

The acceleration of energetic particles and their propagation in magnetic fields of the solar wind and the Galaxy is a topical astrophysical problem. Cosmic rays (CR) affect communications and the operation of on-board spacecraft electronics and disturb the magnetosphere and the ionosphere of the Earth. The scattering of particles by magnetic-field irregularities is the primary mechanism governing the CR propagation in the interplanetary medium. If the scattering of energetic particles in the interplanetary medium is relatively inefficient (i.e., the mean free path is comparable to the heliocentric distance), a kinetic equation should be used to characterize the CR propagation. The Fokker–Planck kinetic equation is used to analyze the propagation of charged energetic particles in a magnetic field represented as a superposition of a mean uniform field and magnetic inhomogeneities of various scales. This kinetic equation corresponds to multiple small-angle scattering, and its collision integral characterizes particle diffusion in the momentum space. A system of differential equations for the spherical harmonics of the CR distribution function is obtained based on the kinetic equation. The CR transport equations are derived and solved. The evolution of the CR distribution function under anisotropic scattering of particles by magnetic-field fluctuations is examined. It is demonstrated that the angular distribution function of particles depends to a considerable extent on the degree of their scattering anisotropy. The temporal dependence of the CR distribution function is analyzed, and the parameter characterizing the scattering anisotropy is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. B. A. Gal’perin, I. N. Toptygin, and A. A. Fradkin, “Scattering of particles by magnetic inhomogeneities in a strong magnetic field,” J. Exp. Theor. Phys. 33, 526–531 (1971).

    ADS  Google Scholar 

  2. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series (Nauka, Moscow, 1981; Gordon and Breach, New York, 1986).

  3. I. N. Toptygin, “On the time dependence of the intensity of cosmic rays at the anisotropic stage of solar flares,” Geomagn. Aeron. 12, 989 (1972).

    Google Scholar 

  4. I. N. Toptygin, Cosmic Rays in Interplanetary Magnetic Fields (Nauka, Moscow, 1983; Reidel, Dordrecht, 1985).

  5. Yu. I. Fedorov, “Intensity of cosmic rays at the initial stage of a solar flare,” Kinematics Phys. Celestial Bodies 34, 1–12 (2018).

    Article  ADS  Google Scholar 

  6. V. I. Shishov, “On propagation of high-energy solar protons in the interplanetary magnetic field,” Geomagn. Aeron. 6, 223 (1966).

    MathSciNet  Google Scholar 

  7. W. I. Axford, “Anisotropic diffusion of solar cosmic rays,” Planet. Space Sci. 13, 1301 (1965).

    Article  ADS  Google Scholar 

  8. J. Beeck and G. Wibberenz, “Pitch angle distributions of solar energetic particles and the local scattering properties of the interplanetary medium,” Astrophys. J. 311, 437 (1986).

    Article  ADS  Google Scholar 

  9. J. W. Bieber, J. A. Earl, G. Green, et al., “Interplanetary pitch-angle scattering and coronal transport of solar energetic particles: New information from Helios,” J. Geophys. Res.: Space Phys. 85, 213 (1980).

    Article  Google Scholar 

  10. J. W. Bieber, P. A. Evenson, and M. A. Pomerantz, “Focusing anisotropy of solar cosmic rays,” J. Geophys. Res.: Space Phys. 91, 8713 (1986).

    Article  ADS  Google Scholar 

  11. L. I. Dorman and M. E. Katz, “Cosmic ray kinetics in space,” Space Sci. Rev. 70, 529–575 (1977).

    Article  ADS  Google Scholar 

  12. J. A. Earl, “Diffusion of charged particles in a random magnetic field,” Astrophys. J. 180, 227 (1973).

    Article  ADS  Google Scholar 

  13. J. A. Earl, “New description of charged particle propagation in random magnetic field,” Astrophys. J. 425, 331 (1994).

    Article  ADS  Google Scholar 

  14. F. Effenberger and Y. Litvinenko, “The diffusion approximation versus the telegraph equation for modeling solar energetic particle transport with adiabatic focusing. 1. Isotropic pitch angle scattering,” Astrophys. J. 783, 15 (2014).

    Article  ADS  Google Scholar 

  15. Yu. I. Fedorov, B. A. Shakhov, and M. Stehlik, “Non-diffusive transport of cosmic rays in homogeneous regular magnetic fields,” Astron. Astrophys. 302, 623–634 (1995).

    ADS  Google Scholar 

  16. Yu. I. Fedorov, M. Stehlik, K. Kudela, and J. Kassavicova, “Non-diffusive particle pulse transport: Application to an anisotropic solar GLE,” Sol. Phys. 208, 325–334 (2002).

    Article  ADS  Google Scholar 

  17. Yu. I. Fedorov and B. A. Shakhov, “Description of non-diffusive cosmic ray propagation in a homogeneous regular magnetic field,” Astron. Astrophys. 402, 805 (2003).

    Article  ADS  MATH  Google Scholar 

  18. L. A. Fisk and W. I. Axford, “Anisotropies of solar cosmic rays,” Sol. Phys. 7, 486 (1969).

    Article  ADS  Google Scholar 

  19. T. J. Gombosi, J. R. Jokipii, J. Kota, et al., “The telegraph equation in charged particle transport,” Astrophys. J. 403, 377 (1993).

    Article  ADS  Google Scholar 

  20. K. Hasselmann and G. Wibberenz, “Scattering charged particles by random electromagnetic fields,” Z. Geophys. 34, 353 (1968).

    Google Scholar 

  21. K. Hasselmann and G. Wibberenz, “A note of the parallel diffusion coefficient,” Astrophys. J. 162, 1049 (1970).

    Article  ADS  Google Scholar 

  22. J. R. Jokipii, “Cosmic ray propagation. 1. Charged particle in a random magnetic field,” Astrophys. J. 146, 480 (1966).

    Article  ADS  Google Scholar 

  23. E. Kh. Kagashvili, G. P. Zank, J. Y. Lu, and W. Droge, “Transport of energetic charged particles. 2. Small-angle scattering,” J. Plasma Phys. 70, 505–532 (2004).

    Article  ADS  Google Scholar 

  24. J. Kota, “Coherent pulses in the diffusive transport of charged particles,” Astrophys. J. 427, 1035–1080 (1994).

    Article  ADS  Google Scholar 

  25. G. Li, R. Moore, R. A. Mewaldt, et al., “A twin-CME scenario for ground level enhancement events,” Space Sci. Rev. 171, 141 (2012).

    Article  ADS  Google Scholar 

  26. Yu. E. Litvinenko and P. L. Noble, “Comparison of the telegraph and hyperdiffusion approximations in cosmic ray transport,” Phys. Plasmas 23, 062901 (2016).

    Article  ADS  Google Scholar 

  27. M. A. Malkov and R. Z. Sagdeev, “Cosmic ray transport with magnetic focusing and the "telegraph” model,” Astrophys. J. 808, 157 (2015).

    Article  ADS  Google Scholar 

  28. L. I. Miroshnichenko and J. A. Perez-Peraza, “Astrophysical aspects in the studies of solar cosmic rays,” Int. J. Mod. Phys. A. 23, 1 (2008).

    Article  ADS  Google Scholar 

  29. N. A. Schwadron and T. I. Gombosi, “A unifying comparison of nearly scatter free transport models,” J. Geophys. Res.: Space Phys. 99, 19301 (1994).

    Article  ADS  Google Scholar 

  30. B. A. Shakhov and M. Stehlik, “The Fokker–Planck equation in the second order pitch angle approximation and its exact solution,” J. Quant. Spectrosc. Radiat. Transfer 78, 31–39 (2003).

    Article  ADS  Google Scholar 

  31. M. A. Shea and D. F. Smart, “Space weather and the ground-level solar proton events of the 23rd solar cycle,” Space Sci. Rev. 71, 161 (2012).

    Article  ADS  Google Scholar 

  32. G. M. Webb, M. Pantazopolou, and G. P. Zank, “Multiple scattering and the BGK Boltzmann equation,” J. Phys. A Math. Gen. 33, 3137–3160 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. G. Wibberenz and G. Green, “New methods and results in the field of interplanetary propagation,” in Proc. 11th Eur. Cosmic Ray Symp., Balatonfüred, Hungary, Aug. 21–27, 1988, Invited Talks (Központi Fizikai Kutató Intézet, Budapest, 1989), p. 51.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Fedorov.

Additional information

Translated by D. Safin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, Y.I. Cosmic-Ray Distribution Function under Anisotropic Scattering of Particles by Magnetic-Field Fluctuations. Kinemat. Phys. Celest. Bodies 35, 1–16 (2019). https://doi.org/10.3103/S0884591319010021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591319010021

Keywords:

Navigation