Skip to main content
Log in

Space Weather and the Ground-Level Solar Proton Events of the 23rd Solar Cycle

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Solar proton events can adversely affect space and ground-based systems. Ground-level events are a subset of solar proton events that have a harder spectrum than average solar proton events and are detectable on Earth’s surface by cosmic radiation ionization chambers, muon detectors, and neutron monitors. This paper summarizes the space weather effects associated with ground-level solar proton events during the 23rd solar cycle. These effects include communication and navigation systems, spacecraft electronics and operations, space power systems, manned space missions, and commercial aircraft operations. The major effect of ground-level events that affect manned spacecraft operations is increased radiation exposure. The primary effect on commercial aircraft operations is the loss of high frequency communication and, at extreme polar latitudes, an increase in the radiation exposure above that experienced from the background galactic cosmic radiation. Calculations of the maximum potential aircraft polar route exposure for each ground-level event of the 23rd solar cycle are presented. The space weather effects in October and November 2003 are highlighted together with on-going efforts to utilize cosmic ray neutron monitors to predict high energy solar proton events, thus providing an alert so that system operators can possibly make adjustments to vulnerable spacecraft operations and polar aircraft routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The designation of SPE is slightly ambiguous. Some authors use SPE to designate solar proton events while other authors use SPE to designate solar particle events. The abbreviation SEP is also frequently used to define either solar energetic protons or solar energetic particles. In this manuscript we use the term solar particles to include all particulate emissions from the Sun and SPE to designate solar proton events.

  2. The average solar wind plasma proton energy is approximately 1 keV; the average solar wind electron energy is approximately 100 eV.

  3. http://www.swpc.noaa.gov/info/Glossary.html.

  4. White light solar flares are those visible in normal white light without benefit of special filters. Contemporary solar flare observations are chromospheric brightenings observable in the H-alpha line.

  5. In “normal” space weather events the major geomagnetic storm disruptions occur 1–2 days after the initial solar activity.

  6. We are considering only solar activity between 30 E and 30 W as “near solar central meridian”.

  7. Very small GLEs (<5 %) may have been missed during solar cycle 19 as there were no polar neutron monitors before the IGY (1957–1958).

  8. Kahler et al. (2012), provide a table of the GLEs in solar cycle 21–23 containing associated solar and CME data (when available).

  9. http://www.ngdc.noaa.gov/stp/satellite/anomaly/doc/anom5j.xls.

  10. The radio astronomy unit “sfu” means solar flux units. One sfu equals 10−22 W m−2 Hz−1 (Castelli et al. 1973; Castelli and Guidice 1976).

  11. http://www.ngdc.noaa.gov/stp/satellite/anomaly/doc/tdrs5j.xls.

  12. Available at http://www.gsf.de/epcard.

  13. Available at http://www.cami.jccbi.gov/AAM-600/610/600Radio.html.

  14. A flight level of 36,000 feet corresponds to 11 km in altitude and has an overhead atmospheric shielding mass of 217 gm cm−2.

  15. Copeland et al. (2008) compute the radiation dose for all the large GLEs that have occurred since 1986.

  16. The magnitude of the geomagnetic storm is very dependent upon the orientation of the interplanetary magnetic field embedded in the plasma interacting with the Earth. A large and sustained southward interplanetary magnetic field results in the largest energy transfer into the magnetosphere, significant ring currents flowing in the magnetosphere and the largest geomagnetic storms.

  17. The radiation exposure due to galactic cosmic radiation at 40,000 feet varies from about 3 microSv hr−1 at equatorial latitudes to a range of ∼5 to 9 microSv hr−1 at polar latitudes depending on the phase of the solar cycle.

  18. The “alert” level for solar particle radiation is a radiation dose rate in excess of 20 microSv hr−1 (NCRP 1995).

  19. The CARI-6 estimates of the radiation dose at 40,000 feet under normal galactic cosmic radiation for this time period of the solar cycle on this flight path was 5.5 microSv hr−1.

  20. http://www.eurados.org.

References

  • S.-I. Akasofu, A historical review of the geomagnetic storm-producing plasma flows from the Sun. Space Sci. Rev. 164, 85–132 (2011)

    ADS  Google Scholar 

  • D.K. Bailey, Polar cap absorption. Planet. Space Sci. 12, 495–539 (1964)

    ADS  Google Scholar 

  • D. Band, J. Matteson, L. Ford, B. Schaefer, D. Palmer, B. Teegarden, T. Cline, M. Briggs, W. Paciesas, G. Pendleton, G. Fishman, C. Kouveliotou, C. Meegan, R. Wilson, P. Lestrade, BASTE observations of gamma-ray burst spectra. I. Spectral diversity. Astrophys. J. 695, 281–292 (1993)

    ADS  Google Scholar 

  • L.P. Barbieri, R.E. Mahnot, October–November 2003’s space weather and operations lessons learned. Space Weather 2, S09002 (2004). doi:10.1029/2004SW000064

    ADS  Google Scholar 

  • J. Bartels, Terrestrial-magnetic activity and its relations to solar phenomena. Terr. Magn. Atmos. Electr. 37, 1–52 (1932)

    Google Scholar 

  • P. Beck, M. Latocha, S. Rollet, G. Stehno, TEPC reference measurements at aircraft altitudes during a solar storm. Adv. Space Res. 36, 1627–1633 (2005)

    ADS  Google Scholar 

  • P. Beck, D.T. Bartlett, P. Bilski, C. Dyer, E. Flückiger, N. Fuller, P. Lantos, G. Reitz, W. Rühm, F. Spurny, G. Taylor, F. Trompier, F. Wissmann, Validation of modelling the radiation exposure due to solar particle events in aircraft altitudes. Radiat. Prot. Dosim. 131, 51–58 (2008)

    Google Scholar 

  • P. Beck, C. Dyer, N. Fuller, A. Hands, M. Latocha, S. Rollet, F. Spurný, Overview of on-board measurements during solar storm periods. Radiat. Prot. Dosim. 136, 297–303 (2009)

    Google Scholar 

  • K.L. Bedingfield, R.D. Leach, M.B. Alexander (eds.), Spacecraft system failures and anomalies attributed to the natural space environment. NASA Reference Publication 1390, NASA, MSFC, Alabama, 1996

  • A. Belov, E. Eroshenko, H. Mavromichalaki, C. Plainaki, V. Yanke, A study of the ground level enhancement of 23 February 1956. Adv. Space Res. 35, 697–701 (2005)

    ADS  Google Scholar 

  • J.W. Bieber, P. Evenson, Determination of energy spectra for the large solar particle events of 1989, in 22nd International Cosmic Ray Conference. Contributed Papers, vol. 3 (Dublin Institute for Advanced Studies, Dublin, 1991), pp. 129–132

    Google Scholar 

  • J.W. Bieber, W. Dröge, P.A. Evenson, R. Pyle, D. Ruffolo, U. Pinsook, P. Tooprakai, M. Rujiwarodom, T. Khumlumlert, S. Krucker, Energetic particle observations during the 2000 July 14 solar event. Astrophys. J. 567, 622–634 (2002)

    ADS  Google Scholar 

  • J.W. Bieber, P. Evenson, W. Dröge, R. Pyle, D. Ruffolo, M. Rujiwarodom, P. Tooprakai, T. Khumlumlert, Spaceship earth observations of the Easter 2001 solar particle event. Astrophys. J. 601, L103–L106 (2004)

    ADS  Google Scholar 

  • J.W. Bieber, J. Clem, D. Desilets, P. Evenson, D. Lal, C. Lopate, R. Pyle, Long-term decline of South Pole neutron rates. J. Geophys. Res. 112, A12102 (2007). doi:10.1029/2006JA011894

    ADS  Google Scholar 

  • D.J. Bombardieri, M.L. Duldig, J.E. Humble, K.J. Michael, An improved model for relativistic solar proton acceleration applied to the 2005 January 20 and earlier events. Astrophys. J. 682, 1315–1327 (2008)

    ADS  Google Scholar 

  • D.H. Boteler, The super storms of August/September 1859 and their effects on the telegraph system. Adv. Space Res. 38, 159–172 (2006)

    ADS  Google Scholar 

  • R. Bütikofer, E.O. Flückiger, Radiation doses along selected flight profiles during two extreme solar cosmic ray events. Astrophys. Space Sci. Trans. 7, 105–109 (2011)

    ADS  Google Scholar 

  • R. Bütikofer, E.O. Flückiger, L. Desorgher, M. Moser, The extreme solar cosmic ray particle event on 20 January 2005 and its influence on the radiation dose rate at aircraft altitude. Sci. Total Environ. 391(2–3), 177–183 (2008)

    Google Scholar 

  • H.V. Cane, Coronal mass ejections and Forbush decreases. Space Sci. Rev. 93, 55–77 (2000)

    ADS  Google Scholar 

  • J.P. Castelli, D.A. Guidice, Impact of current solar radio patrol observations. Vistas Astron. 19, 355–384 (1976)

    ADS  Google Scholar 

  • J.P. Castelli, W.R. Barron, J. Aarons, Solar radio activity in August 1972. AFCRL-TR-73-0086, Air Force Cambridge Research Laboratory, Hanscom AFB, Bedford, MA, 1973

  • A.P. Cerruti, P.M. Kintner, D.E. Gary, L.J. Lanzerotti, E.R. de Paula, H.B. Vo, Observed solar radio burst effects on GPE/Wide area augmentation system carrier-to-noise ratio. Space Weather 4, S10006 (2006). doi:10.1029/2006SW000254

    ADS  Google Scholar 

  • C.R. Clauer, G. Siscoe (eds.), The great historical geomagnetic storm of 1859: a modern look. Adv. Space Res. 38(2) (2006)

  • E.W. Cliver, The 1859 space weather event: then and now. Adv. Space Res. 38, 119–129 (2006)

    ADS  Google Scholar 

  • K. Copeland, W. Friedberg, Private communication, 2010

  • K. Copeland, H.H. Sauer, W. Friedberg, Solar Radiation Alert System. DOT/FAA/AM-05/14, Office of Aerospace Medicine, Washington, DC, 2005

  • K. Copeland, H.H. Sauer, F.E. Duke, W. Friedberg, Cosmic radiation exposure of aircraft occupants on simulated high-latitude flights during solar proton events from 1 January 1986 through 1 January 2008. Adv. Space Res. 42, 1008–1029 (2008)

    ADS  Google Scholar 

  • Ts. Dachev, B. Tomov, Yu. Matviichuk, Pl. Dimitrov, J. Lemaire, Gh. Gregoire, M. Cyamukungu, H. Schmitz, K. Fujitaka, Y. Uchihori, H. Kitamura, G. Reitz, R. Beaujean, V. Petrov, V. Shurshakov, V. Benghin, F. Spurny, Calibration results obtained with Liulin-4 type dosimeters. Adv. Space Res. 30, 917–925 (2002)

    ADS  Google Scholar 

  • S.P. Duggal, M.A. Pomerantz, Sectorial anisotropy of solar cosmic rays. Sol. Phys. 27, 227–241 (1972)

    ADS  Google Scholar 

  • M.L. Duldig, Fine time resolution analysis of the 14 July 2000 GLE, in Proceedings 27th International Cosmic Ray Conference, vol. 8 (2001), pp. 3363–3367

    Google Scholar 

  • M.L. Duldig, D.J. Bombardieri, J.E. Humble, Further fine time resolution analysis of the Bastille Day 2000 GLE, in 28th International Cosmic Ray Conference, ed. by T. Kajita, Y. Asaoka, A. Kawachi, Y. Matsubara, M. Sasaki, vol. 6 (Universal Academy Press, Tokyo, 2003), pp. 3389–3392

    Google Scholar 

  • C.S. Dyer, F. Lei, S.N. Clucas, D.F. Smart, M.A. Shea, Calculations and observations of solar particle enhancements to the radiation environment at aircraft altitudes. Adv. Space Res. 32, 81–93 (2003)

    ADS  Google Scholar 

  • C.S. Dyer, F. Lei, A. Hands, P. Truscott, Solar particle events in the QuinetiQ atmospheric radiation model. IEEE Trans. Nucl. Sci. 54(4), 1071–1075 (2007)

    ADS  Google Scholar 

  • European Commission, Council directive 96/29 EURATOM of 13 May 1996 laying down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation. Off. J. Eur. Commun. 39, L159 (1996)

    Google Scholar 

  • S.E. Forbush, Three unusual cosmic-ray increases possibly due to charged particles from the Sun. Phys. Rev. 70, 771–772 (1946)

    ADS  Google Scholar 

  • S.E. Forbush, T.D. Stinchcomb, M. Schein, The extraordinary increase of cosmic-ray intensity on November 19, 1949. Phys. Rev. 79, 501–504 (1950)

    ADS  Google Scholar 

  • P.S. Freier, W.R. Webber, Exponential rigidity spectrums for solar-flare cosmic rays. J. Geophys. Res. 68, 1605–1629 (1963)

    ADS  Google Scholar 

  • W. Friedberg, K. Copeland, F.E. Duke, K. O’Brien, E.B. Darden, Guidelines and technical information provided by the US federal aviation administration to promote radiation safety for air carrier crew members. Radiat. Prot. Dosim. 86, 323–327 (1999)

    Google Scholar 

  • D.E. Gary, L.L. Lanzerotti, G.M. Nita, D. Thomson, Effects of solar radio bursts on wireless system, in Effects of Space Weather on Technology Infrastructure, ed. by I.A. Daglis (Kluwer Academic, Dordrecht, 2004), pp. 203–213

    Google Scholar 

  • I.L. Getley, Observation of solar particle event on board a commercial flight from Los Angeles to New York on 29 October 2003. Space Weather 2, S05002 (2004). doi:10.1029/2003SW000058

    ADS  Google Scholar 

  • I.L. Getley, M.L. Duldig, D.F. Smart, M.A. Shea, The radiation dose along north American transcontinental flight paths during quiescent and disturbed geomagnetic conditions. Space Weather 3, S01004 (2005a). doi:10.1029/2004SW000110

    Google Scholar 

  • I.L. Getley, M.L. Duldig, D.F. Smart, M.A. Shea, The applicability of model based aircraft radiation dose estimates. Adv. Space Res. 36, 1638–1644 (2005b)

    ADS  Google Scholar 

  • N. Gopalswamy, H. Xie, S. Yashiro, I. Usoskin, Coronal mass ejections and ground level enhancements, in 29th International Cosmic Ray Conference (2005), pp. 101–104

    Google Scholar 

  • N. Gopalswamy, H. Xie, S. Yashiro, I. Usoskin, Ground level enhancement events of solar cycle 23. Indian J. Radio Space Phys. 39, 240–248 (2010)

    Google Scholar 

  • N. Gopalswamy, H. Xie, S. Yashiro, S. Akiyama, P. Mäkelä, I.G. Usoskin, Properties of ground level enhancement events and the associated solar eruptions during solar cycle 23. Space Sci. Rev. (2012, this issue). doi:10.1007/s11214-012-9890-4

  • G.E. Hale, The spectrohelioscope and its work, Part I. History, instruments, adjustments, and methods of observation. Astrophys. J. 70, 265–311 (1929)

    ADS  Google Scholar 

  • G.E. Hale, The spectrohelioscope and its work, Part III. Solar eruptions and their apparent terrestrial effects. Astrophys. J. 73, 379–412 (1931)

    ADS  Google Scholar 

  • J.E. Humble, M.L. Duldig, D.F. Smart, M.A. Shea, The 29 September 1989 solar cosmic ray event as observed by Australian stations, in 22nd International Cosmic Ray Conference. Contributed Papers, vol. 3 (Dublin Institute for Advanced Studies, Dublin, 1991), pp. 109–112

    Google Scholar 

  • ICRP, Effective dose; recommended limits for occupational radiation exposure, ICRP publication 60: 1990 recommendations of the International Commission on Radiological Protection. Ann. ICRP 21(1–3), 33–34 (1991)

    Google Scholar 

  • ICRP, ICRP Publication 75: general principles for the radiation protection of workers. Ann. ICRP 27(1) (1997)

  • R.H.A. Iles, J.B.L. Jones, G.C. Taylor, J.B. Blake, R.D. Bentley, R. Hunter, L.K. Harra, A.J. Coates, Effect of solar energetic particle (SEP) events on the radiation exposure levels to aircraft passengers and crew: case study of 14 July 2000 SEP event. J. Geophys. Res. 109, A11103 (2004). doi:10.1029/2003JA010343

    ADS  Google Scholar 

  • S.W. Kahler, E.W. Cliver, A.J. Tylka, W.F. Dietrich, A comparison of ground level event e/p and Fe/O ratios with associated solar flare and CME characteristics. Space Sci. Rev. (2012, this issue). doi:10.1007/s11214-011-9768-x

  • R.P. Kane, The idea of space weather—a historical perspective. Adv. Space Res. 37, 1261–1264 (2006)

    ADS  Google Scholar 

  • R. Kataoka, T. Sato, Y. Hiroshi, Predicting radiation dose on aircraft from solar energetic particles. Space Weather 9, S08004 (2011). doi:10.1029/2011SW000699

    Google Scholar 

  • H.C. Koons, J.E. Mazur, R.S. Selesnick, J.B. Blake, J.F. Fennell, J.L. Roeder, P.C. Anderson, The impact of the space environment on space systems, in 6th Spacecraft Charging Technology Conference, AFRL-VS-TR-20001578 (Air Force Research Laboratory, Bedford, 2000), pp. 7–11

    Google Scholar 

  • K. Kudela, M. Storini, M.Y. Hofer, A. Belov, Cosmic rays in relation to space weather. Space Sci. Rev. 93, 153–174 (2000)

    ADS  Google Scholar 

  • T. Kuwabara, J.W. Bieber, J. Clem, P. Evenson, R. Pyle, Development of a ground level enhancement alarm system based upon neutron monitors. Space Weather 4, S10001 (2006a). doi:10.1029/2006SW000223

    ADS  Google Scholar 

  • T. Kuwabara, J.W. Bieber, J. Clem, P. Evenson, R. Pyle, K. Munakata, S. Yasue, C. Kato, S. Akahane, M. Koyama, Z. Fujii, M.L. Duldig, J.E. Humble, M.R. Silva, N.B. Trivedi, W.D. Gonzalez, N.J. Schuch, Real-time cosmic ray monitoring system for space weather. Space Weather 4, S08001 (2006b). doi:10.1029/2005SW000204

    Google Scholar 

  • P. Lantos, N. Fuller, History of the solar particle event radiation doses on-board aeroplanes using semi-empirical model and Concorde measurements. Radiat. Prot. Dosim. 104, 199–210 (2003)

    Google Scholar 

  • E.H. Levy, S.P. Duggal, M.A. Pomerantz, Adiabatic Fermi acceleration of energetic particles between converging interplanetary shock waves. J. Geophys. Res. 81, 51–59 (1976)

    ADS  Google Scholar 

  • B.J. Lewis, L.G.I. Bennett, A.R. Green, A. Butler, M. Desormeaux, F. Kitching, M.J. McCall, B. Ellaschuk, M. Pierre, Aircrew dosimetry using the predictive code for aircrew radiation exposure (PCAIRE). Radiat. Prot. Dosim. 116, 320–326 (2005)

    Google Scholar 

  • C.G. Little, H. Leinbach, The riometer—A device for the continuous measurement of ionospheric absorption. Proc. Inst. Radio Eng. 47(2), 315–320 (1959)

    Google Scholar 

  • J.A. Lockwood, M.A. Shea, Variations of the cosmic radiation in November 1960. J. Geophys. Res. 66, 3083–3093 (1961)

    ADS  Google Scholar 

  • J.A. Lockwood, M.A. Shea, Increase of the cosmic-ray nucleonic intensity in November, 1960. J. Phys. Soc. Jpn. 17, 306–309 (1962). Supplement A-II

    Google Scholar 

  • J.A. Lockwood, H. Debrunner, E.O. Flueckiger, J.M. Ryan, Solar proton rigidity spectra from 1 to 10 GV of selected flare events since 1960. Sol. Phys. 208, 113–140 (2002)

    ADS  Google Scholar 

  • B. Lovell, The emergence of radio astronomy in the U.K. after World War II. Q. J. R. Astron. Soc. 28, 1–9 (1987)

    ADS  Google Scholar 

  • J.L. Lovell, M.L. Duldig, J.E. Humble, An extended analysis of the September 1989 cosmic ray ground level enhancement. J. Geophys. Res. 103, 23733–23742 (1998)

    ADS  Google Scholar 

  • D. Matthiä, B. Heber, G. Reitz, M. Meier, L. Sihver, T. Berger, K. Herbst, Temporal and spatial evolution of the solar energetic particle event on 20 January 2005 and resulting radiation doses in aviation. J. Geophys. Res. 114, A08104 (2009a). doi:10.1029/2009JA014125

    Google Scholar 

  • D. Matthiä, B. Heber, G. Reitz, L. Sihver, T. Berger, M. Meier, The ground level event 70 on December 13th, 2006 and related effective doses at aviation altitudes. Radiat. Prot. Dosim. 136, 304–310 (2009b)

    Google Scholar 

  • H. Mavromichalaki, M. Gerontidou, G. Mariatos, C. Plainaki, A. Papaioannou, C. Sarlanis, G. Souvatzoglou, A. Belov, E. Eroshenko, V. Yanke, S. Tsitsomeneas, Space weather forecasting at the new Athens center: The recent extreme events of January 2005. IEEE Trans. Nucl. Sci. 52, 2307–2312 (2005)

    ADS  Google Scholar 

  • H. Mavromichalaki, G. Souvatzoglou, C. Sarlanis, G. Mariatos, C. Plainaki, M. Gerontidou, A. Belov, E. Eroshenko, V. Yanke, Space weather prediction by cosmic rays. Adv. Space Res. 37, 1141–1147 (2006)

    ADS  Google Scholar 

  • H. Mavromichalaki, A. Papaioannou, C. Plainaki, C. Sarlanis, G. Souvatzoglou, M. Gerontidou, M. Papailiou, E. Eroshenko, A. Belov, V. Yanke, E.O. Flückiger, R. Bütikofer, M. Pariai, M. Storini, K.-L. Klein, N. Fuller, C.T. Steigies, O.M. Rother, B. Heber, R.F. Wimmer-Schweingruber, K. Kudela, I. Strharsky, R. Langer, I. Usoskin, A. Ibragimov, A. Chilingaryan, G. Hovsepyan, A. Reymers, A. Yeghikyan, O. Kryakunova, E. Dryn, N. Nikolayevskiy, L. Dorman, L. Pustil’nik, Applications and usage of the real-time neutron monitor database. Adv. Space Res. 47, 2210–2222 (2011)

    ADS  Google Scholar 

  • K.G. McCracken, The production of cosmic radiation by a solar flare on August 31, 1956. Nuovo Cimento 13, 1074–1080 (1959)

    Google Scholar 

  • K.G. McCracken, The cosmic-ray flare effect 2. The flare effects of May 4, November 12, and November 15, 1960. J. Geophys. Res. 67, 435–446 (1962)

    ADS  Google Scholar 

  • K.G. McCracken, U.R. Rao, B.C. Fowler, M.A. Shea, D.F. Smart, Cosmic rays (asymptotic directions, etc.), in Geophysical Measurements: Techniques, Observational Schedules and Treatment of Data, ed. by C.M. Minnis. Annals of the IQSY, vol. 1 (The MIT Press, Cambridge, 1968), pp. 198–214. Chap. 14

    Google Scholar 

  • K.G. McCracken, H. Moraal, P.H. Stoker, Investigation of the multiple-component structure of the 20 January 2005 cosmic ray ground level enhancement. J. Geophys. Res. 113, A12101 (2008). doi:10.1029/2007JA012829

    ADS  Google Scholar 

  • C.J. Mertens, B.T. Kress, M. Wiltberger, S.R. Blattnig, T.S. Slaba, S.C. Solomon, M. Engel, Geomagnetic influence on aircraft radiation exposure during a solar energetic particle event in October 2003. Space Weather 8, S03006 (2010). doi:10.1029/2009SW000487

    Google Scholar 

  • P. Meyer, E.N. Parker, J.A. Simpson, Solar cosmic rays of February 1956 and their propagation through interplanetary space. Phys. Rev. 104, 768–783 (1956)

    ADS  Google Scholar 

  • H. Moraal, K.G. McCracken, The time structure of ground-level enhancements in solar cycle 23. Space Sci. Rev. (2012, this issue). doi:101007/s11214-011-9742-7

  • NAS, Radiation and the International Space Station: Recommendations to Reduce Risk (US National Academy of Sciences, Washington, 2000)

    Google Scholar 

  • NASA, GSFC Space Science Mission Operations, Operations Lessons Learned, Operations Report. NASA, Greenbelt, MD, 15 January 2004

  • NCRP, Radiation Exposure and High-Altitude Flight, NCRP Commentary No. 12. National Council on Radiation Protection and Measurements, Bethesda, MD, 1995

  • NCRP, Radiation Protection Guidance for Activities in Low Earth Orbit. Report No. 142 Bethesda, MD, 2002

  • H.W. Newton, Solar flares and magnetic storms. Mon. Not. R. Astron. Soc. 103, 244–257 (1943)

    ADS  Google Scholar 

  • N.V. Nitta, Y. Liu, M.L. DeRosa, R.W. Nightingale, What are special about ground-level events? flares, CMEs, active regions and magnetic field connection. Space Sci. Rev. (2012, this issue). doi:10.1007/s11214-012-9877-1

  • NOAA, Service Assessment, Intense Space Weather Storms October 19–November 07, 2003. US Department of Commerce, National Weather Service, Silver Spring, MD, April 2004

  • E.N. Parker, Solar magnetism: the state of our knowledge and ignorance. Space Sci. Rev. 144, 15–24 (2009)

    ADS  Google Scholar 

  • G. Pfotzer, On the separation of direct and indirect fractions of solar cosmic radiation on February 23, 1956 and on the difference in steepness of momentum spectrum of these two components. Suppl. Nuovo Cim. 8, 180–187 (1958)

    Google Scholar 

  • C. Plainaki, A. Belov, E. Eroshenko, H. Mavromichalaki, V. Yanke, Modeling ground level enhancements: event of 20 January 2005. J. Geophys. Res. 112, A04102 (2007). doi:10.1029/2006JA011926

    ADS  Google Scholar 

  • C. Plainaki, H. Mavromichalaki, A. Belov, E. Eroshenko, V. Yanke, Modeling the solar cosmic ray event of 13 December 2006 using ground level neutron monitor data. Adv. Space Res. 34, 447–479 (2009)

    Google Scholar 

  • M.A. Pomerantz, S.P. Duggal, Remarkable cosmic ray storm and associated relativistic solar particle events of August 1972, in Collected Data Reports on August 1972 Solar-Terrestrial Events, Part II, ed. by H.E. Coffey, UAG Report 28, pp. 430–440, World Data Center A for Solar-Terrestrial Physics, NOAA, Boulder, CO, July 1973

  • R. Ramaty, N. Mandzhavidze, Theoretical models for high-energy solar flare emissions, in High-Energy Solar Phenomena—A New Era of Spacecraft Measurements, ed. by J.M. Ryan, W.T. Vestrand. AIP Conference Proceedings, vol. 294 (American Institute of Physics, New York, 1994), pp. 26–44

    Google Scholar 

  • G. Reid, Polar cap absorption—observation and theory. Fundam. Cosm. Phys. 1, 167–202 (1974)

    ADS  Google Scholar 

  • J.M. Ryan, J.A. Lockwood, H. Debrunner, Solar energetic particles. Space Sci. Rev. 93, 35–53 (2000)

    ADS  Google Scholar 

  • T. Sato, H. Yasuda, K. Niita, A. Endo, L. Sihver, Development of PARMA: PHITS-based analytical radiation model in the atmosphere. Radiat. Res. 170, 244–259 (2008)

    Google Scholar 

  • H. Schraube, G.P. Leuthold, W. Heinrich, S. Roesler, D. Combecher, European program package for the calculation of aviation route doses, version 3.0, National Research Center for Environment and Health Institute of Radiation Protection, D-85758, Neuherberg, Germany, Dec. 2000

  • M.A. Shea, D.F. Smart, Asymptotic Directions and Vertical Cutoff Rigidities for Selected Cosmic-Ray Stations as Calculated Using the International Geomagnetic Reference Field Model Appropriate for Epoch 1975.0, Air Force Cambridge Research Laboratories Environmental Research Papers No. 510, AFCRL-TR-75-0247, 5 May 1975

  • M.A. Shea, D.F. Smart, Possible evidence for a rigidity-dependent release of relativistic protons from the solar corona. Space Sci. Rev. 32, 251–271 (1982)

    ADS  Google Scholar 

  • M.A. Shea, D.F. Smart, A summary of major solar proton events. Sol. Phys. 127, 297–320 (1990)

    ADS  Google Scholar 

  • M.A. Shea, D.F. Smart, Solar proton events: history, statistics, and predictions, in Solar-Terrestrial Predictions Workshop-IV, vol. 2, ed. by J. Hruska, M.A. Shea, D.F. Smart, G. Heckman (U.S. Department of Commerce, NOAA, ERL, Boulder, 1993), pp. 48–70

    Google Scholar 

  • M.A. Shea, D.F. Smart, Significant proton events of solar cycle 22 and a comparison with events of previous solar cycles. Adv. Space Res. 14(10), 631–638 (1994)

    ADS  Google Scholar 

  • M.A. Shea, D.F. Smart, History of solar proton event observations, in Cosmic Rays 94, Solar, Heliospheric, Astrophysical and High-Energy Aspects, ed. by G. Erdös, K. Kecskemety, P. Kiraly. Nuclear Physics B, vol. 39A (North-Holland, Amsterdam, 1995), pp. 16–25

    Google Scholar 

  • M.A. Shea, D.F. Smart, Compendium of the eight articles on the “Carrington event” attributed to or written by Elias Loomis in the American Journal of Science. Adv. Space Res. 38, 313–385 (2006)

    ADS  Google Scholar 

  • M.A. Shea, D.F. Smart, Significant solar proton events for five solar cycles (1954–2007), in 30th International Cosmic Ray Conference, vol. 1 (2008), pp. 261–264

    Google Scholar 

  • M.A. Shea, D.F. Smart, J.H. Allen, D.C. Wilkinson, Spacecraft problems in association with episodes of intense solar activity and related terrestrial phenomena during March 1991. IEEE Trans. Nucl. Sci. 39, 1754–1760 (1992)

    ADS  Google Scholar 

  • D.F. Smart, M.A. Shea, Probable pitch angle distribution and spectra of the 23 February 1956 solar cosmic ray event, in 21st International Cosmic Ray Conference, Conference Papers, vol. 5 (1990), pp. 257–260

    Google Scholar 

  • D.F. Smart, M.A. Shea, Fifty years of progress in geomagnetic cutoff rigidity determinations. Adv. Space Res. 44, 1107–1123 (2009)

    ADS  Google Scholar 

  • D.F. Smart, M.A. Shea, J.E. Humble, P.J. Tanskanen, A model of the 7 May 1978 solar cosmic ray event, in 16th International Cosmic Ray Conference. Conference Papers, vol. 5 (1979), pp. 238–243

    Google Scholar 

  • D.F. Smart, M.A. Shea, M.D. Wilson, L.C. Gentile, Solar cosmic rays on 29 September 1989; An analysis using the world-wide network of cosmic ray stations, in 22nd International Cosmic Ray Conference. Contributed Papers, vol. 3 (Dublin Institute for Advanced Studies, Dublin, 1991), pp. 97–100

    Google Scholar 

  • D.F. Smart, M.A. Shea, H.E. Spence, L. Kepko, Two groups of extremely large >30 MeV solar proton fluence events. Adv. Space Res. 37, 1734–1740 (2006a)

    ADS  Google Scholar 

  • D.F. Smart, M.A. Shea, K.G. McCracken, The Carrington event: possible solar proton intensity-time profile. Adv. Space Res. 38, 215–225 (2006b)

    ADS  Google Scholar 

  • F. Spurný, Ts. Dachev, Intense solar flare measurements, April 15, 2001. Radiat. Prot. Dosim. 95, 273–275 (2001)

    Google Scholar 

  • F. Spurný, K. Kudela, T. Dachev, Airplane radiation dose decrease during a strong Forbush decrease. Space Weather 2, S05001 (2004). doi:10-1029/2004SW000074

    ADS  Google Scholar 

  • J.F. Steljes, H. Carmichael, K.G. McCracken, Characteristic and fine structure of the large cosmic-ray fluctuations in November 1960. J. Geophys. Res. 6, 1363–1377 (1961)

    ADS  Google Scholar 

  • P.H. Stoker, Spectra of solar proton ground level events using neutron monitor and neutron moderated detector recordings, in 19th International Cosmic Ray Conference. Conference Papers, vol. 4 (1985), pp. 114–117

    Google Scholar 

  • P.H. Stoker, Two-detector recordings of GLE’s at Sanae, in Proceedings of the 30th International Cosmic-Ray Conference, vol. 1 (2008), pp. 201–204

    Google Scholar 

  • Z. Švestka, E.W. Cliver, History and basic characteristics of eruptive flares, in Eruptive Solar Flares, ed. by Z. Švestka, B.V. Jackson, M.E. Machado (Springer, New York, 1992), pp. 1–11

    Google Scholar 

  • D.B. Swinson, M.A. Shea, The September 29, 1989 ground-level event observed at high rigidity. Geophys. Res. Lett. 17, 1073–1075 (1990)

    ADS  Google Scholar 

  • A.J. Tylka, W.F. Dietrich, A new and comprehensive analysis of proton spectra in ground-level enhanced (GLE) solar particle events, in Proceedings 31st International Cosmic Ray Conference, Lodz (2009). CDROM Paper number ICRC 0273

    Google Scholar 

  • E.V. Vashenyuk, V.V. Pchelkin, L.I. Miroshnichenko, Flux and spectrum dynamics of relativistic solar protons in the event of 29 September 1989. New computational modeling by the ground level data, in 27th International Cosmic Ray Conference. Contributed Papers, vol. 8 (2001), pp. 3417–3420

    Google Scholar 

  • E.V. Vashenyuk, Y.V. Balabin, B.B. Gvozdevsky, Relativistic solar proton dynamics in large GLE of 23rd solar cycle, in 28th International Cosmic Ray Conference. Contributed Papers, vol. 6 (2003), pp. 3401–3404

    Google Scholar 

  • E.V. Vashenyuk, Yu.V. Balabin, J. Perez-Peraza, A. Gallegos-Cruz, L.I. Miroshnichenko, Some features of the sources of relativistic particles at the Sun in the solar cycles 21–23. Adv. Space Res. 38, 411–417 (2006)

    ADS  Google Scholar 

  • E.V. Vashenyuk, Yu.V. Balabin, P.H. Stoker, Responses to solar cosmic rays of neutron monitors of a various design. Adv. Space Res. 40, 331–337 (2007)

    ADS  Google Scholar 

  • E.V. Vashenyuk, Y.V. Balabin, L.I. Miroshnichenko, Relativistic solar protons in the ground level event of 23 February 1956: new study. Adv. Space Res. 41, 926–935 (2008)

    ADS  Google Scholar 

  • D.F. Webb, J.H. Allen, Spacecraft and ground anomalies related to the October–November 2003 solar activity. Space Weather 2, S03008 (2004). doi:10.1029/2004SW000075

    ADS  Google Scholar 

  • D.C. Wilkinson, S.C. Daughtridge, J.L. Stone, H.H. Sauer, P. Darling, TDRS-1 single event upsets and the effect of the space environment. IEEE Trans. Nucl. Sci. 38, 1708–1712 (1991)

    ADS  Google Scholar 

  • D.C. Wilkinson, M.A. Shea, D.F. Smart, A case history of solar and galactic space weather effects on the geosynchronous communications satellite TDRS-1. Adv. Space Res. 26, 27–30 (2000)

    ADS  Google Scholar 

  • H. Yasuda, T. Sato, H. Yonehara, T. Kosako, K. Fujitaka, Y. Sasaki, Management of cosmic radiation exposure for aircraft crew in Japan. Radiat. Prot. Dosim. 146, 123–125 (2011). doi:10.1093/rpd/ncrl33

    Google Scholar 

  • J.F. Ziegler, Terrestrial cosmic rays. IBM J. Res. Dev. 40(1), 19–40 (1996)

    Google Scholar 

  • J.F Ziegler, G.R. Srinivasan (eds.), IBM J. Res. Devel. 40(1), 1–130 (1996)

Download references

Acknowledgements

The authors thank Kyle Copeland and Wallace Friedberg of the Civil Aerospace Medical Institute, Federal Aviation Administration, Oklahoma City, for providing the radiation dose calculations in Table 4. We thank Professor Tsvetan Dachev for Figs. 6 and 7. Comments from C.S. Dyer and Nariaki Nitta as well as the two reviewers were very helpful. The neutron monitor data were provided by many groups. In particular we acknowledge the data provided by Professor Harm Moraal and data from the neutron monitors operated by the Bartol Research Institute. The Bartol neutron monitors are supported by the United States National Science Foundation under grants ANT-0739620 and ANT-0838839.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Shea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shea, M.A., Smart, D.F. Space Weather and the Ground-Level Solar Proton Events of the 23rd Solar Cycle. Space Sci Rev 171, 161–188 (2012). https://doi.org/10.1007/s11214-012-9923-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-012-9923-z

Keywords

Navigation