Skip to main content
Log in

Plasma motions in the solar loop of emerging magnetic flux

  • Solar Physics
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

The results of analyzing variations in the line-of-sight (LOS) velocities in the solar loop at photospheric and chromospheric levels in the region of emerging magnetic flux for the evolving active region NOAA 11024 are reported. The analysis combines the data of multiwave spectropolarimetric observations that were carried out on July 4, 2009, (Tenerife, Spain) using THEMIS solar telescope and the data obtained with GOES, SOHO, and STEREO cosmic satellites. A complex sequence of active events has been studied: formation of the Ellerman bomb, B1 X-ray microflare, and four chromospheric surges that were formed as a result of magnetic reconnection caused by new emerging magnetic flux. The Ellerman bomb was formed in the vicinity of a growing pore. Variations in the velocity V LOS of the EB had an oscillation character for chromosphere and photosphere. Before the microflare, the average velocities of the upward and downward plasma fluxes in one leg of the magnetic loop were nearly the same—26 km/s. During the microflare, the velocity V LOS of the ascending and descending flows increased up to −33 and 50 km/s, respectively. Variations in line-of-sight velocity of a plasma in the second leg of the magnetic loop correlated well with variations of V LOS in the region of microflare, but they occurred 1.5 minutes later. During the time of observations, four chromospheric ejections of matter were formed and three of them occurred in the region of Ellerman’s bomb formation. Sharp variations in the soft X-ray intensity occurred during these ejections. At photospheric level, variations in the line-of-sight velocity of plasma in the legs of the loop occurred in the opposite direction. In the region of the first leg, velocity V LOS diminished from −1.8 to −0.4 km/s, while the velocity increased from −0.6 to −2.6 km/s in the region of the second leg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Gurtovenko and R. I. Kostyk, Fraunhofer spectrum and a system of solar oscillator forces (Naukova Dumka, Kiev, 1989) [in Russian].

    Google Scholar 

  2. M. N. Pasechnik and S. N. Chornogor, “Dynamics of the atmoshere of active region during two chromospheric surges,” Visn. Kiev Nats. Un. Tarasa Shevchenka. Astronomiya No. 48, 22–26 (2012).

    Google Scholar 

  3. S. N. Chornogor and K. V. Alikaeva, “Line-of-sight velocity field in the Hα-loops in a course of the bright solar flare,” Kinematika Fiz. Nebes. Tel 19(5), 417–430 (2003).

    ADS  Google Scholar 

  4. N. S. Shilova and L. I. Starkova, “3D structure and matter motion velocities in dark loops of the near-limb Hα flares,” Kinematika Fiz. Nebes. Tel 3(6), 28–35 (1987).

    ADS  Google Scholar 

  5. V. Archontis, “Flux emergence and associated dynamic events in the sun,” in ASP Conf. Ser., Ed. by K. Tsinganos, D. Hatzidimitriou, and T. Matsakos, 424, 3 (2010).

    ADS  Google Scholar 

  6. V. Archontis, F. Moreno-Insertis, K. Galsgaard, et al., “Emergence of magnetic flux from the convection zone into the corona,” Astron. Astrophys. 426, 1047–1063 (2004).

    Article  ADS  Google Scholar 

  7. S. Berkebile-Stoiser, P. Gomory, and A. M. Veronig, “Multiwavelength fine structure and mass flows in solar microflares,” Astron. Astrophys. 505(2), 811–823 (2009).

    Article  ADS  Google Scholar 

  8. J. W. Brasius and G. D. Holman, “Early chromospheric response during a solar microflare observed with SOHO’S CDS and RHESSI,” Astrophys. J. 720, 1472–1482 (2010).

    Article  ADS  Google Scholar 

  9. G. Cauzzi, A. Falchi, and R. Falciani, “Mass motions in young active region,” Mem. S. A. It. 74, 659–662 (2003).

    ADS  Google Scholar 

  10. J. Chae, J. Qiu, H. Wang, and P. R. Goode, “Extreme-ultraviolet jets and Hα surges in solar microflares,” Astrophys. J. 513(1), L75–L78 (1999).

    Article  ADS  Google Scholar 

  11. S. V. Dominguez, L. van Driel-Gesztelyi, and L. R. Bellot Rubio, “Granular-scale elementary flux emergence episodes in a solar active region,” Solar Phys. 278(1), 99–120 (2012).

    Article  ADS  Google Scholar 

  12. T. Emonet and F. Moreno-Insertis, “The physics of twisted magnetic tubes rising in a stratified medium: twodimensional results-1998,” Astrophys. J. 492, 804–821 (1998).

    Article  ADS  Google Scholar 

  13. A. J. Engell, M. Siarkowski, M. Gryciuk, et al., “Flares and their underlying magnetic complexity,” Astrophys. J. 726, 12–20 (2011).

    Article  ADS  Google Scholar 

  14. G. H. Fisher, “Dynamics of flare-driven chromospheric condensation,” Astrophys. J. 346(2), 1019–1029 (1989).

    Article  ADS  Google Scholar 

  15. L. V. Ermakova and A. I. Khlystova, “Emergence of magnetic flux at the solar surface and the origin of active regions,” Astron. Rep. 53(9), 869–878 (2009).

    Article  ADS  Google Scholar 

  16. L. V. Ermakova and A. I. Khlystova, “The dynamics of photospheric line-of-sight velocities in emerging active regions,” Astron. Rep. 55(29), 163–173 (2011).

    ADS  Google Scholar 

  17. S. L. Guglielmino, L. R. Bellot Rubio, F. Reale, and M. Carlsson, F. Zuccarello, et al., “Multiwavelength observations of small-scale reconnection events triggered by magnetic flux emergence in the solar atmosphere,” Astrophys. J. 724, 1083–1098 (2010).

    Article  ADS  Google Scholar 

  18. M. Gupta, J. Rajmal, T. Jayshree, et al., “Microflares as possible sources for coronal heating,” J. Astrophys. Astron. 29, 171–177 (2008).

    Article  ADS  Google Scholar 

  19. A. W. Hood, V. Archontis, K. Galsgaard, et al., “The emergence of toroidal flux tubes from beneath the solar photosphere,” Astron. Astrophys. 503, 999–1011 (2009).

    Article  ADS  Google Scholar 

  20. D. B. Jess, M. Mathioudakis, P. K. Browning, et al., “Microflare activity driven by forced magnetic reconnection,” Astrophys. J. Lett. 712, L111–L115 (2010).

    Article  ADS  Google Scholar 

  21. R. L. Jiang, C. Fang, and P. F. Chen, “Numerical simulations of chromospheric microflares,” Astrophys. J. 710, 1387–1394 (2010).

    Article  ADS  Google Scholar 

  22. N. N. Kondrashova, M. N. Pasechnik, S. N. Chornogor, et al., “Atmosphere dynamics of the active region NOAA 11024,” Solar Phys. 284(2), 499–513 (2013).

    Article  ADS  Google Scholar 

  23. H. Kozu, R. Kitai, D. H. Brooks, et al., “Horizontal and vertical flow structure in emerging flux regions,” Publ. Astron. Soc. Jpn. 58, 407–421 (2006).

    ADS  Google Scholar 

  24. A. Lagg, J. Woch, S. K. Solanki, et al., “Supersonic downflows in the vicinity of a growing pore. Evidence of unresolved magnetic fine structure at chromospheric heights,” Astron. Astrophys. 462, 1147–1155 (2007).

    Article  ADS  Google Scholar 

  25. B. W. Lites, A. Skumanich, and PilletV. Martinez, “Vector magnetic fields of emerging solar flux I. Properties at the site of emergence,” Astron. Astrophys. 333, 1053–1068 (1998).

    ADS  Google Scholar 

  26. Ch. Liu, J. Qiu, D. E. Gary, et al., “Studies of microflares in RHESSI hard X-ray, Big Bear Solar Observatory Hα, and Michelson Doppler imager magnetograms,” Astrophys. J. 604, 442–448 (2004).

    Article  ADS  Google Scholar 

  27. Yu. Liu and H. Kurokawa, “On a surge: properties of emerging flux region,” Astrophys. J. 610, 1136–1147 (2004).

    Article  ADS  Google Scholar 

  28. D. W. Longcop, G. H. Fisher, and S. Arendt, “The evolution and fragmentation of rising magnetic flux tubes,” Astrophys. J. 464, 999–1011 (1996).

    Article  ADS  Google Scholar 

  29. M. L. Luoni, P. Demoulin, C. H. Mandrini, et al., “Twisted flux tube emergence evidenced in longitudinal magnetograms: magnetic tongues,” Solar Phys. 270(1), 45–74 (2011).

    Article  ADS  Google Scholar 

  30. M. S. Madjarska, J. G. Doyle, and B. de Pontieu, “Explosive events associated with a surge,” Astrophys. J. 701, 253–259 (2009).

    Article  ADS  Google Scholar 

  31. R. Schlichenmaier, R. Rezaei, and N. Bello Gonzalez, “On the formation of penumbrae as observed with the German VTT, SOHO/MDI, and SDO/HMI,” in Hinode-4. Astron. Soc. Pacif., Ed. by L. R. Bellot Rubio, F. Reale, and M. Carlsson, CS-455, 2012.

    Google Scholar 

  32. W. Schmidt, K. Muglach, and M. Knolker, “Free-fall downflow observed in He I 1083.0 nanometers and Hα,” Astrophys. J. 544, 567–571 (2000).

    Article  ADS  Google Scholar 

  33. B. Schmieder, G. Peres, S. Enome, et al., “Energy transport and dynamics,” Solar Phys. 153, 55–72 (1994).

    Article  ADS  Google Scholar 

  34. B. Schmieder, D. M. Rust, and M. K. Georgoulis, “Emerging flux and the heating of coronal loops,” Astrophys. J. 601, 530–545 (2004).

    Article  ADS  Google Scholar 

  35. D. Spadaro, S. Billotta, L. Contarino, et al., “AFS dynamic evolution during the emergence of an active region,” Astron. Astrophys. 425, 309–319 (2004).

    Article  ADS  Google Scholar 

  36. L. H. Strous and C. Zwaan, “Phenomena in emerging active region. II. Properties of the dynamic small-scale structure,” Astrophys. J. 527, 435–444 (1999).

    Article  ADS  Google Scholar 

  37. B. Sylwester, J. Sylwester, M. Siarkowski, et al., “Physical characteristics of AR 11024 plasma based on SphinX and XRT Data,” Cent. Eur. Astrophys. Bull. 35, 171–180 (2011).

    ADS  Google Scholar 

  38. G. Valori, L. M. Green, P. Demouli, et al., “Nonlinear force-free extrapolation of emerging flux with a global twist and serpantine fine structures,” Solar Phys. 278(1), 73–97 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Pasechnik.

Additional information

Original Russian Text © M.N. Pasechnik, 2014, published in Kinematika i Fizika Nebesnykh Tel, 2014, Vol. 30, No. 4, pp. 3–22.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasechnik, M.N. Plasma motions in the solar loop of emerging magnetic flux. Kinemat. Phys. Celest. Bodies 30, 161–172 (2014). https://doi.org/10.3103/S0884591314040047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591314040047

Keywords

Navigation